首页|基于CycleGAN的风格迁移系统设计与实践

基于CycleGAN的风格迁移系统设计与实践

扫码查看
针对现有风格迁移系统使用VGG16/VGG19 或传统的纹理模仿导致的使用复杂和效率低下的问题,意在制作一个用户友好的、性能较强的、可互动性高的基于深度学习的风格迁移原型系统,以更好地普及大众使用及专业艺术领域创意创作.以印象主义风格为例,运用CycleGAN采用SSIM指标及用户主观评价进行效果衡量,结果表明,相比传统的VGG19 均有不同幅度的提升,测试组最低提升 29.33%,最高提升 153.52%.此外,针对用户端开发了一个风格迁移原型系统,用户可以通过简单易用的界面实现手绘作品和上传图像的印象主义风格迁移.系统展示效果和用户体验得到了优化,并获得了用户积极的反馈,表明该系统在提升用户审美认识和计算机辅助设计领域具有巨大的潜力,可为未来审美教育和艺术创作提供新的思路.
Design and implementation of style transfer system based on CycleGAN
In response to the complexity and inefficiency caused by the use of VGG16/VGG19 or traditional texture imitation in existing style transfer systems,the aim of this paper is to create a user-friendly,high-performance,and highly interactive deep learning-based style transfer prototype system.The system was designed to popularize its use among the general public and stimulate creative production in the professional art field.Taking the impressionistic style as an example,using CycleGAN,SSIM index and user subjective evaluation for effect measurement,all of them have different magnitudes of improvement compared with the traditional VGG19,with the lowest improvement of 29.33%and the highest improvement of 153.52%in the test group.In addition,for the user side,a style migration prototype system was developed,which allows users to realize the impressionistic style migration of hand-drawn works and uploaded images through an easy-to-use interface.The system display and user experience were optimized and received positive feedback from users.These results show its great potential in the field of enhancing users'aesthetic awareness and computer-aided design,and provide new ideas for future aesthetic education and artistic creation.

style transferCycleGANdeep learningsystem designprototype system

田明鑫、席阳

展开 >

北京服装学院 商学院,北京 100029

风格迁移 CycleGAN 深度学习 系统设计 原型系统

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(7)