首页|基于拉曼光谱数据增强的纺织纤维定性分析

基于拉曼光谱数据增强的纺织纤维定性分析

扫码查看
废旧纺织品的组分鉴别存在人力成本高、鉴别效率低的问题,基于拉曼光谱的机器学习快速鉴别方法是解决这一难题的潜在方案.然而,机器学习方法通常需要大量的数据进行训练,为了降低数据采集成本并提高在小样本拉曼光谱数据集下模型对纺织纤维的分类准确率,提出了一种拉曼光谱数据增强方法.该方法在预处理后的5 种纺织纤维拉曼光谱数据集上,通过规定皮尔逊相关系数结合信噪比公式进行噪声叠加,并使用Dirichlet分布进行线性组合的数据增强.结果表明,在经过数据增强后SVMpoly 模型在 10 轮 2 折交叉验证平均准确率达到了92.4%,相较于原始拉曼光谱数据集提高了 68.2%.该数据增强方法能够在扩充数据集的同时丰富样本的多样性,从而提高模型的分类性能.
Qualitative analysis of textile fibers based on Raman spectroscopy data augmentation
The identification of components in waste textiles has the problems of high labor cost and low efficiency.A machine learning rapid identification method based on Raman spectroscopy is a potential solution to solve this problem.However,machine learning methods typically require a large amount of data for training.In order to reduce the cost of data collection and improve the classification accuracy of models for textile fibers in small sample Raman spectroscopy datasets,a Raman spectroscopy data augmentation method was proposed.This method enhances the data on preprocessed Raman spectroscopy datasets of 5 textile fibers by specifying Pearson correlation coefficients combined with signal-to-noise ratio formula for noise superposition and linear combination of Dirichlet distribution.The results show that after data augmentation,the SVMpoly model achieves an average accuracy of 92.4%in 10 rounds of 2-fold cross validation,which is 68.2%higher than the original Raman spectroscopy dataset.This data augmentation method can enrich the diversity of samples while expanding the dataset,thereby improving the classification performance of the model.

textile fibersRaman spectroscopydata augmentationqualitative analysis

武天福、赵慧、杨光、贾丽霞、刘瑞

展开 >

新疆大学 新疆特色纺织品与清洁染整技术重点实验室,新疆 乌鲁木齐 830046

新疆昌吉回族自治州纤维检验所,新疆 昌吉 831100

新疆科技学院 化工与纺织工程学院,新疆 库尔勒 841003

纺织纤维 拉曼光谱 数据增强 定性分析

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(7)