首页|基于ResNet 18模型的新疆游牧民族传统纺织品纹样分类

基于ResNet 18模型的新疆游牧民族传统纺织品纹样分类

扫码查看
为了解决传统方法在新疆游牧民族纺织品纹样分类时准确率低、速度慢的问题,提出一种改进的卷积神经网络模型(ResNet 18-CA).在ResNet 18 卷积神经网络模型基础上添加注意力机制模块,加强对纹样特征的提取,并引入迁移学习思想,有效防止网络过拟合,并将改进后的网络模型与当前经典的几类卷积神经网络模型进行对比实验.改进后的卷积神经网络模型在建立的新疆传统纺织品纹样数据集上的分类识别准确率达到了98.62%,相比于原始的ResNet 18 模型提高了3.72%,而模型大小仅增大0.2 MB,改进后的神经网络模型的分类准确率更高.
Classification of traditional textile patterns of Xinjiang nomads based on ResNet 18 model
To address the issues of low accuracy and slow speed in traditional methods for pattern recognition and classification of textile patterns among nomadic ethnic groups in Xinjiang,an improved convolutional neural network(ResNet 18-CA)for the recognition of textile patterns among Xinjiang nomadic ethnic groups was proposed in this paper,which enhances the extraction of pattern features by adding an attention mechanism module to the ResNet 18 convolutional neural network model.Additionally,the concept of transfer learning to effectively prevent overfitting of the network was introduced in the paper.The improved convolutional neural network model has a classification recognition accuracy of 98.62%on the established Xinjiang traditional textile pattern data set,which is 3.72%higher than the original ResNet 18 model,but the model is only 0.2 MB larger,and the improved neural network model has a higher classification accuracy.

nomadstraditional textile patternsResnet18attention mechanismtransfer learning

赵楷文、薄贤姝、钱娟、阎明星

展开 >

新疆大学 纺织与服装学院,新疆 乌鲁木齐 830046

新疆大学 丝绸之路服饰艺术研究基地,新疆 乌鲁木齐 830046

游牧民族 传统纺织品纹样 ResNet 18 注意力机制 迁移学习

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(11)