首页|基于ZC-YOLO的棉花杂质检测

基于ZC-YOLO的棉花杂质检测

扫码查看
针对棉花杂质形状复杂,尺度变化大导致检测精度低的问题,提出一种基于改进YOLOv5 的棉花表面杂质的智能分类检测方法.采用适应于数据集的自适应锚框算法,对锚框进行重新聚类,提高对小目标杂质的检测效果;在特征融合部分引入MCA注意力机制模块,聚焦有效特征层的杂质目标信息,降低无关区域的干扰,对棉花杂质目标定位更加准确;采用GIoU损失函数用于计算棉花杂质预测框与真实框的损失计算,滤出最佳棉花杂质检测框,使算法更加适用于当前检测任务.试验结果表明,提出的算法模型平均精度均值(mAP@0.5)达到92.5%,相对YOLOv3、YOLOv5、YOLOv8 与YOLOv6 而言,其精度值mAP值指标分别提高了其15.4%、2.2%、13.5%和 26.4%,为棉花杂质的智能分类检测提供参考,提高了模型检测精度.
Cotton impurity detection based on ZC-YOLO
Aiming at the problems of low detection accuracy caused by complex shape and large scale change of cotton impurities,an intelligent classification detection method based on improved YOLOv5 was proposed.The adaptive anchor frame algorithm adapted to the data set was used to re-cluster the anchor frame to improve the detection effect of small target impurities.In the feature fusion part,MCA attention mechanism module was introduced to focus the impurity target information of the effective feature layer,reduce the interference of irrelevant areas,and locate the cotton impurity target more accurately.The GIoU loss function was used to calculate the loss of cotton impurity prediction box and real box,and the best cotton impurity detection box was filtered out,which makes the algorithm more suitable for the current detection task.Experimental results show that the average accuracy of the proposed algorithm model(mAP@0.5)reaches 92.5%.Compared with YOLOv3,YOLOv5,YOLOv8 and YOLOv6,the mAP index of the proposed algorithm was improved by 15.4%,2.2%,13.5%and 26.4%,respectively.It provides reference for intelligent classification and detection of cotton impurities,and the accuracy of model detection is improved.

cotton impuritiesclassification detectionYOLOv5adaptive anchor frameMCA attention mechanism

王中璞、吴正香、张立杰、阿不都热西提·买买提、张倩

展开 >

新疆大学 纺织与服装学院,新疆 乌鲁木齐 830046

新疆维吾尔自治区纤维质量监测中心,新疆 乌鲁木齐 830026

棉花杂质 分类检测 YOLOv5 自适应锚框 MCA注意力机制

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(12)