首页|基于轻量化语义分割网络的织物复杂纹理疵点分割方法

基于轻量化语义分割网络的织物复杂纹理疵点分割方法

扫码查看
针对织物复杂纹理表面疵点分割难题,现有自动化检测方法在计算复杂度、分割精度及实时性方面仍有待提升,为解决这一问题,提出基于轻量化语义分割网络的方法.通过图像增强技术提升织物复杂纹理图像的清晰度,采用显著区域提取方法定位疵点候选区域,构建轻量化语义分割网络,利用语义信息准确分割疵点.实验结果表明:所研究方法在平均召回面积方面有着明显的优势,证明了所研究方法在疵点分割任务上的高效性和准确性,有助于提升产品质量和生产效率.
Fabric complex texture defect segmentation method based on lightweight semantic segmentation network
Aiming at the problem of textile and garment complex texture surface defect segmentation,the existing automatic detection methods still need to be improved in terms of computational complexity,segmentation accuracy and real-time performance.To solve this problem,a method based on lightweight semantic segmentation network was proposed.The image enhancement technology was used to improve the clarity of the complex texture image of textile and garment,and the salient region extraction method was used to locate the candidate defect area.A lightweight semantic segmentation network was constructed to accurately segment defects by using semantic information.The experimental results show that the proposed method has obvious advantages in terms of average recall area,which proves the efficiency and accuracy of the proposed method in defect segmentation task,and helps to improve product quality and production efficiency.

lightweight semantic segmentation networktextile and clothingcomplex texturessurface defectsimage enhancement technologysalient region extraction

朱琳、马爽

展开 >

河北美术学院 设计学院,河北 石家庄 050700

华南农业大学 珠江学院,广东 广州 510900

轻量化语义分割网络 织物纹理 疵点 图像增强技术 显著区域提取

2024

毛纺科技
中国纺织信息中心 北京毛纺织科学研究所

毛纺科技

北大核心
影响因子:0.3
ISSN:1003-1456
年,卷(期):2024.52(12)