首页|基于AdaBoost的航班油耗与飞行时间预测研究

基于AdaBoost的航班油耗与飞行时间预测研究

扫码查看
传统的运行控制系统使用性能等学科计算公式来计算飞机油耗和飞行时间,计算精度低,工作流程需要优化.本文针对传统飞行计划性能计算公式计算飞机燃油消耗量和飞行时间精度低的问题,通过使用灰色关联分析来筛选相关指标,使用遗传算法优化决策树基学习器,并引入集成学习的概念来构建预测模型.实验验证基于南方航空ARJ航线的QAR历史数据,与飞行计划系统相比组合模型的均方根误差分别降低了23.68%和36.21%,为航空公司的节油策略和飞行常态化研究提供了算法支持.
Prediction Model of Fuel Consumption and Flight Time Based on AdaBoost
Traditional operation control systems use performance and other disciplinary calculation formulas to calculate aircraft fuel consumption and flight time,the calculation accuracy is low and the work processes need to be optimized.A fuel consumption and flight time prediction model based on AdaBoost is proposed to address the issue of low accuracy of traditional flight plan performance calculation formulas in calculating aircraft fuel consumption and flight time.This model uses grey correlation analysis to screen correlation indicators,optimizes decision tree base learners using genetic algorithms,and introduces the concept of ensemble learning.Experimental verification is conducted using historical QAR data from the ARJ routes of China Southern Airlines.The root mean square error of the combined model is reduced by 23.68%and 36.21%respectively compared to the flight planning system.The model provides algorithmic support for the study on fuel saving strategies and flight normalcy of airlines.

fuel predictionflight timeAdaBoostdecision treegenetic algorithm

辜汝桐、刘建军、陈东玲、马尧、谢静娜

展开 >

中国南方航空股份有限公司,广东广州 510000

燃油预测 飞行时间 AdaBoost 决策树 遗传算法

2024

民航学报

民航学报

ISSN:
年,卷(期):2024.8(3)
  • 8