首页|基于改进浣熊算法优化随机森林的民航事故等级分类模型研究

基于改进浣熊算法优化随机森林的民航事故等级分类模型研究

扫码查看
为提高随机森林模型的计算性能和鲁棒性,克服参数选择对随机森林模型性能的不利影响,本研究使用改进的浣熊算法(ICOA)对随机森林模型(RF)进行优化,建立了 ICOA-RF模型,并应用ICOA-RF混合模型对民航历史事故等级划分进行了验证.结果表明:通过小波函数扰动策略和互利共生策略改进浣熊算法,提高了浣熊算法搜索能力并增加种群多样性,避免盲目搜索,提高算法整体的求解精度;ICOA-RF模型较好地拟合了民航历史事故数据,分类精度良好.可见,ICOA-RF模型全局寻优能力强,分类精度满足要求,可用于民航事故等级的划分.
Research on Civil Aviation Accident Classification Model Based on Improved Raccoon Algorithm Optimized Random Forest
In order to improve the computational performance and robustness of the random forest model,and overcome the adverse effects of parameter selection on the performance of the random forest model,this study uses the improved raccoon algorithm(ICOA)to optimize the random forest model(RF),establishes the ICOA-RF model,and applies the ICOA-RF hybrid model to validate the classification of accidents in civil aviation history.The results show that:the raccoon algorithm is improved by wavelet function perturbation strategy and mutualistic symbiosis strategy,which improves the searching ability of the raccoon algorithm and increases the diversity of the populations,avoids blind searching,and improves the overall solution accuracy of the algorithm;the ICOA-RF model fits the civil aviation historical accident data better,and the classification accuracy is good.It can be seen that the ICOA-RF model has a strong global optimization ability,the classification accuracy meets the requirements,and the model can be used for the classification of civil aviation accidents.

wavelet function perturbation strategymutual benefit and symbiosis strategyraccoon algorithmrandom forestmodel optimizationclassification of civil aviation accidents

黄毅峰、王占海

展开 >

中国民航科学技术研究院,北京 100028

小波函数扰动策略 互利共生策略 浣熊算法 随机森林 模型优化 民航事故等级分类

2024

民航学报

民航学报

ISSN:
年,卷(期):2024.8(4)