首页|单通道脑电信号疲劳分类检测

单通道脑电信号疲劳分类检测

扫码查看
为解决头皮脑电信号电位信号微弱、易受干扰、具有非平稳性和随机性、手动提取特难度大的问题,提出了CNN+BiGRU的网络模型,充分提取了EEG信号前后序列之间的关联信息.实验结果表明,提出双流网络模型准确率达到 95.70%.与现有的研究方法相比,显著提高了单通道脑电信号进行疲劳检测的准确性与可行性,为疲劳检测研究提供了新思路.
Fatigue Classification Detection of Single-Channel EEG Signal
To solve the problem of weak scalp EEG potential signals,susceptibility to interference,non stationarity and randomness,and difficulty in manually extracting features,we propose a CNN+BiGRU network model that fully extracts the correlation information between EEG signal sequences before and af-ter.The experimental results show that our proposed dual stream network model achieves an accuracy of 95.70%.Compared with existing research methods,the accuracy and feasibility of fatigue detection using single channel EEG signals have been significantly improved,providing new ideas for fatigue detection re-search.

EEG signalsdeep learningBiGRU

张怀勇、张振昌

展开 >

福建农林大学计算机与信息学院,福建 福州 350002

脑电信号 深度学习 BiGRU

2024

闽江学院学报
闽江学院

闽江学院学报

CHSSCD
影响因子:0.221
ISSN:1009-7821
年,卷(期):2024.45(5)