首页|基于组合光谱输入量的土壤全氮反演模型

基于组合光谱输入量的土壤全氮反演模型

扫码查看
以福州市土壤全氮为研究对象,基于土壤反射率及其 13 种变换光谱进行模型输入量的筛选和优化,构建20 个组合光谱输入量模型对研究区土壤全氮进行反演.结果表明:20 个组合光谱输入量模型的预测精度高且稳定,能准确估算和粗略估算全氮的模型约占 60.0%和 40.0%,较单一光谱模型预测精度分别提高了 59.3%和6.4%.以组合光谱作为输入量的土壤全氮反演模型,能够实现不同变换光谱间的优势互补,不仅提升了模型的预测能力,也增强了模型的稳定性,为土壤全氮高光谱预测提供新思路.
Hyperspectral Inversion Models for Soil Total Nitrogen Content Based on Combined Spectral Input Variables
This study focuses on soil total nitrogen in Fuzhou City.Model input variables were firstly se-lected and optimized on the basis of soil reflectance and 13 transformed spectra.Then 20 combined spectral input models were constructed to invert soil total nitrogen in the study area.The results show that 20 models using combined spectral input variables have high prediction accuracy and stability.A-mong them,models that can accurately estimate total nitrogen content account for about 60.0%and those that can roughly estimate the content 40.0%,an increase of 59.3%and 6.4%respectively com-pared with single spectral models.It indicates that soil total nitrogen inversion models constructed with combined spectra enable different transformed spectra to complement each other,enhancing both pre-dictive capability and model stability.This way of modeling gives new insights into hyperspectral predic-tion of soil total nitrogen.

soil total nitrogencombined spectral input variablessingle spectral input variableshy-perspectral inversionmachine learning

江振蓝、陈付勋、沙晋明、罗双飞、罗烨琴

展开 >

闽江学院地理与海洋学院,福建 福州 350108

福建师范大学地理科学学院,福建 福州 350108

土壤全氮 组合光谱输入量 单一光谱输入量 高光谱反演 机器学习

2024

闽江学院学报
闽江学院

闽江学院学报

CHSSCD
影响因子:0.221
ISSN:1009-7821
年,卷(期):2024.45(5)