首页|基于数据增强与对比学习的未知目标立场检测

基于数据增强与对比学习的未知目标立场检测

扫码查看
针对未知目标立场检测任务,提出了基于数据增强与对比学习的未知目标立场检测模型.该模型借助无监督学习方法,通过训练被遮盖目标和被遮盖目标相关词的立场变化,以区分无关于目标和特定于目标的立场特征.为了区分潜在空间中与目标相关的立场特征类型而提高数据嵌入质量,采用一种对比学习框架同时考虑了增强信号和立场标签信息.在公开数据集上,该模型和其他立场检测模型分别进行了实验,结果表明该模型具有较好性能.
Unseen Target Stance Detection Based on Data Augmentation and Contrastive Learning
A stance detection model for unseen target based on data augmentation and contrastive learning is proposed for the stance detection task of unseen target.With the help of an unsupervised learning,the model distinguishes between non goal related and goal specific stance features by training the change of words related to the covered target and the covered target.To distinguish the irrelevant target/target specific stance feature types in the potential space to improve the quality of data embedding,a contrast hierarchical learning framework is adopted,which considers both augmentation signals and stance label information.On the public dataset,this model is compared with other models.The results indicate that the model has excellent performance.

unseen target stance detectiondata augmentationcontrastive learningnatural language-processing

张文浩、赖焌鸣、邹佳霖、倪博文、陈珂

展开 >

广东石油化工学院 电子信息工程学院,广东 茂名 525000

广东石油化工学院 计算机学院,广东 茂名 525000

未知目标立场检测 数据增强 对比学习 自然语言处理

广东省普通高校重点领域专项大学生创新创业训练与培育项目大学生创新创业训练与培育项目

2020ZDZX30387332306273323142

2024

广东石油化工学院学报
广东石油化工学院

广东石油化工学院学报

影响因子:0.2
ISSN:2095-2562
年,卷(期):2024.34(1)
  • 10