首页|基于LSTM民用飞机航材库存预测的研究

基于LSTM民用飞机航材库存预测的研究

Research on civil aircraft aviation material inventory prediction based on LSTM

扫码查看
在仓储、人力、飞机停机成本不断上升的情况下,对航材库存进行精确控制变得尤为重要.通过准确预测库存,可以确保如约交付率,减少订单违约的风险;同时,还能够减少仓储支出,有效地安排维修任务.此外,准确的库存预测有助于航司根据销量和库存做出科学决策,实行动态实时定价策略,从而降低决策成本.首先选取A航材1 080条库存数据经脱敏后进行归一化,并给出处理结果;随后,引入LSTM时序预测求解方法,利用LSTM学习能力强、预防梯度爆炸、拥有可控的信息记忆功能的优势,对误差函数、激活函数、优化器、批处理等参数分析设计;随后将优化的LSTM算法在TF框架下进行长时间跨度的库存预测,最后得出A航材在下一个时间节点的合理库存数量,并利用此预测值进行航材采购和维修计划编制等.
With the increasing costs of warehousing,manpower,and aircraft downtime,precise control of aviation mate-rial inventory is becoming increasingly important.Accurately predicting inventory can achieve high-quality on-time deliv-ery and reduce the possibility of order defaults,can reduce storage expenses and effectively arrange maintenance tasks,can help airlines make scientific decisions based on sales and inventory,implement dynamic real-time pricing strategies,and reduce decision-making costs.This article first selects 1 080 inventory data of A aviation materials and normalizes them after desensitization,and provides the processing results.Subsequently,the LSTM time series prediction solution method was introduced,taking advantage of the strong learning ability,gradient explosion prevention,and controllable information memory function of LSTM,analyzing and designing parameters such as error function,activation function,optimizer,and batch processing.Subsequently,the optimized LSTM algorithm will be used in the TF framework for long-term inventory prediction,and the reasonable inventory quantity of A aviation materials for the next time node will be ob-tained.The predicted values will be used for aviation material procurement and maintenance planning.

civil aircraftLSTM neural networkinventory forecastaviation material

腾杨刚、张海洋、侯严庭、葛桂林

展开 >

上海飞机设计研究院,上海 201210

哈尔滨工业大学,哈尔滨 150001

上海飞机制造有限公司,上海 200443

民用飞机 LSTM神经网络 库存预测 航材

2024

民用飞机设计与研究
中国商用飞机有限责任公司 上海飞机设计研究院

民用飞机设计与研究

影响因子:0.271
ISSN:1674-9804
年,卷(期):2024.(4)