首页|(3+1)-维时空分数阶Yu-Toda-Sasa-Fukuyama方程的精确解

(3+1)-维时空分数阶Yu-Toda-Sasa-Fukuyama方程的精确解

扫码查看
借助 Jumarie's modified Riemann-Liouville 导数的性质,将(3+1)-维时空分数阶 Yu-Toda-Sasa-Fukuyama 方程简化为常微分方程.通过构造一元三次多项式,运用完全判别法得到了(3+1)-维时空分数阶Yu-Toda-Sasa-Fukuyama方程的7组精确解.
Exact Solutions of the(3+1)-Dimensional Space-Time Fractional Yu-Toda-Sasa-Fukuyama Equation
By virtue of Jumarie's modified Riemann-Liouville derivative,the(3+1)-dimensional space-time fractional Yu-Toda-Sasa-Fukuyama equation is simplified to ordinary differential equation.By constructing one variable cubic polynomial,seven groups of exact solutions of(3+1)-dimensional fractional Yu-Toda-Sasa-Fukuyama equation are obtained by using the method of complete discrimination.

(3+1)-dimensional space-time fractional Yu-Toda-Sasa-Fukuyama equationJumarie's modified Riemann-Liouville derivativeexact solutionpolynomial complete discriminantJacobi elliptic function

陈进华、字德荣

展开 >

昆明工业职业技术学院人文教育学院,云南安宁 650300

大理市下关街道福星完小,云南大理 671003

(3+1)-维时空分数阶Yu-Toda-Sasa-Fukuyama方程 Jumarie's modified Riemann-Liouville导数 精确解 多项式完全判别法 Jacobi椭圆函数

2024

红河学院学报
红河学院

红河学院学报

影响因子:0.174
ISSN:1008-9128
年,卷(期):2024.22(5)