首页|大模型应用对商业银行新质生产力的影响研究

大模型应用对商业银行新质生产力的影响研究

扫码查看
近年来,大数据、机器学习、自然语言处理等通用人工智能技术迎来了新一轮发展热潮.作为人工智能领域的一项重大突破,大模型的广泛应用为众多行业的发展提供了强劲动能.商业银行在开展数字化转型的过程中对于大模型的使用也愈发普遍,通过梳理商业银行大模型的技术路线和应用场景可以发现,其主要从数字技术和数据要素两个维度推动形成商业银行新质生产力.一方面,以智能客服、数字员工、智能研发和智能运维为代表的大模型应用场景正在重塑商业银行的数字技术生态;另一方面,以智能营销、产品创新、智能研究、智能风控为代表的大模型应用场景在数据要素的价值挖掘过程中发挥着重要作用.通过在数字技术和数据要素双重维度上持续发力,大模型应用将推动商业银行的生产方式朝着技术创新和数据驱动的方向不断变革.然而,当前商业银行大模型应用也存在不少问题,例如缺失行业认可的场景应用范式、缺少高质量训练数据、缺乏安全性和可信度等.未来,商业银行应着力培育行业应用范式,提升应用管理水平,提高训练数据质量,探索使用合成数据,加强算法优化能力,健全风险防护机制.以期更好发挥大模型在推动商业银行新质生产力发展过程中的积极作用,实现商业银行的持续增长和金融业的高质量发展.
A Study of the Impact of Large Modeling Applications on New Quality Productive Forces in Commercial Banks
In recent years,general artificial intelligence technologies such as big data,machine learning,and natural language processing have ushered in a new round of development boom.As a major breakthrough in the field of artificial intelligence,the wide application of big models has provided strong momentum for the development of many industries.The use of big models by commercial banks in the process of digital transformation has also become more and more common,and by combing the technical routes and application scenarios of big models in commercial banks,it can be found that they mainly promote the formation of new quality productive forces of commercial banks from the two dimensions of digital technology and data elements.On the one hand,the big model application scenarios represented by intelligent customer service,digital staff,intelligent R&D and intelligent operation and maintenance are reshaping the digital technology ecology of commercial banks;on the other hand,the big model application scenarios represented by intelligent marketing,product innovation,intelligent research,and intelligent risk control play an important role in the process of mining the value of data elements.Through continuous efforts in the dual dimensions of digital technology and data elements,the big model application will promote the production mode of commercial banks to change continuously in the direction of technological innovation and data-driven.However,there are many problems with the current big model application in commercial banks,such as the lack of industry-recognized scenario application paradigm,the lack of high-quality training data,and the lack of security and credibility.In the future,commercial banks should focus on cultivating industry application paradigms,improving application management,enhancing training data quality,exploring the use of synthetic data,strengthening algorithm optimization capabilities,and improving risk protection mechanisms.In order to better utilize the positive role of big models in promoting the development of new quality productive forces of commercial banks,and to realize the sustained growth of commercial banks and the high-quality development of the financial industry.

ChatGPTLarge ModelArtificial IntelligenceNatural Language ProcessingNew Quality Productive Forces in Commercial Banks

肖宇、李博文

展开 >

中国社会科学院亚太与全球战略研究院

中国社会科学院大学应用经济学院

ChatGPT 大模型 人工智能 自然语言处理 商业银行新质生产力

2024

农村金融研究
中国农村金融学会

农村金融研究

北大核心
影响因子:0.477
ISSN:1003-1812
年,卷(期):2024.(10)