首页|血吸虫病预防与控制动力学模型研究

血吸虫病预防与控制动力学模型研究

扫码查看
基于血吸虫病的传播特点,构建了一个描述易感人、染病人、易感牛、染病牛、易感钉螺、染病钉螺、尾蚴数量变化的七维微分方程数学模型,研究血吸虫病传播的动力学行为.证明了模型解的非负性和系统的正不变性.使用再生矩阵法计算基本再生数,给出了无病平衡点和地方病平衡点的存在条件,以及无病平衡点的局部稳定和全局稳定条件.利用中心流形理论给出了地方病平衡点的局部稳定条件,并证明了系统向前分岔的存在性.经阈值结构分析发现,有效接触率以及感染人与感染牛产生尾蚴的生产率是影响血吸虫病是否灭绝的关键参数,可以通过加大血吸虫病的卫生健康教育、设立禁牧区、集中处理人畜粪便、消灭血吸虫产生的虫卵、杜绝虫卵的孵化繁殖等措施减少人类和牛种群中血吸虫病的病例.
Study on dynamic model of schistosomiasis prevention and control
Based on the transmission characteristics of schistosomiasis,a 7-dimensional differential equation mathematical model was constructed to describe the changes in the number of susceptible people,infected people,susceptible cattle,infec-ted cattle,susceptible snails,infected snails,and cercariae.The dynamic behavior of schistosomiasis transmission was stud-ied.The non negativity solution of the model and the positive invariance of the system were proved.The basic reproduction number was calculated using the regeneration matrix method.The conditions for the existence of disease-free equilibrium points and endemic equilibrium points are given.The conditions for local and global stability of disease-free equilibrium points are also given.The local stability conditions of endemic equilibrium points are given using central manifold theory,and the existence of forward bifurcation in the system is proved.From the analysis of threshold structure,it is concluded that the effective contact rate and the productivity of infected people and infected cattle producing cercariae are key parameters affecting the extinction of schistosomiasis.Measures such as increasing hygiene and health education on schistosomiasis,es-tablishing grazing prohibition zones,centralized treatment of human and animal feces,eliminating the eggs produced by schistosomiasis,and preventing the hatching and reproduction of eggs can be taken to reduce cases of schistosomiasis in hu-man and cattle populations.

schistosomaequilibrium pointstabilitydynamic model

费荔枝、吕恒民、万冰蓉

展开 >

南昌工程学院工程数学与先进计算重点实验室,江西南昌 330099

南京农业大学园艺学院,江苏南京 210000

血吸虫 平衡点 稳定性 动力学模型

江西省教育厅科学技术研究项目江西省高等学校人文社会科学研究项目

GJJ211926JY22202

2024

南昌工程学院学报
南昌工程学院

南昌工程学院学报

影响因子:0.272
ISSN:1006-4869
年,卷(期):2024.43(1)
  • 16