首页|面向高维非线性最优化问题的粒子折跃算法

面向高维非线性最优化问题的粒子折跃算法

扫码查看
针对高维非线性最优化问题,在APSO和GA等智能算法的基础上,加入相邻对比、移动互斥思想,构建了一种新的智能算法——粒子折跃算法(Particle Warp,PW)。该算法通过对比每个粒子(解)在不同维度上的相近值构建虚拟粒子,计算适应度,为应对"早熟"现象,结合粒子跳跃的随机性、其他粒子对该粒子的排斥性,建立粒子折跃更新公式;针对CEC2017 测试函数不同维度下最优化问题,利用PW与APSO、GA进行求解,分析了新算法的优越性,并将其应用于空间圆拟合中。研究表明,10 种测试函数高维问题的求解中新算法体现了较强的优越性,在30 维求解中优秀率达到90%;在空间圆拟合问题中,PW求取的适应度精确度比APSO提高了6。54%,比GA提高了6。93%,最优解更接近于设计值,最大偏差仅0。0864,满足实际需求,为工程实际中高维非线性最优化问题求解提供了一种新方法。
Particle leapfrog algorithms for high-dimensional nonlinear optimization problems
In response to the high-dimensional nonlinear optimization problem,through the study of intelligent algorithms such as APSO and GA,we constructed a newly improved intelligent algorithm by incorporating the ideas of adjacent compar-ison and moving repulsion.The algorithm constructs virtual particles by comparing the similar values of each particle(solu-tion)in different dimensions and calculates the fitness.In order to cope with the"premature"phenomenon,we take into consideration the randomness of particle jumping and the exclusivity of other particles in establishing the particle leapfrog updating formula;For the optimization problem of CEC2017 test function in different dimensions,PW is used together with APSO and GA for solution,and the superiority of the new algorithm is analyzed.The study shows that:(1)The new algo-rithm demonstrates strong superiority in the solution of high-dimensional problems with 10 kinds of test functions,and the excellence rate reaches 90%in the 30-dimensional solution;(2)In the spatial circle fitting problem,the fitness accuracy obtained by PW is 6.54%higher than that of APSO,and 6.93%higher than that of GA.The optimal solution is closer to the design value,with a maximum deviation of only 0.0864,meeting actual needs.It provides a new method for solving high-dimensional nonlinear optimization problems in engineering practice.

intelligent algorithmparticle swarm optimizationparticle warpgenetic algorithmspace circle fitting

梁兴、崔世杰、王云龙、涂韩韩、李佳

展开 >

南昌工程学院电气工程学院,江西南昌 330099

智能算法 粒子群算法 粒子折跃算法 遗传算法 空间圆拟合

江西省教育厅科学技术研究项目国家自然科学基金资助项目

GJJ21194151969017

2024

南昌工程学院学报
南昌工程学院

南昌工程学院学报

影响因子:0.272
ISSN:1006-4869
年,卷(期):2024.43(3)
  • 19