首页|无人机遥感反演小麦地上生物量模型的特征选择

无人机遥感反演小麦地上生物量模型的特征选择

扫码查看
无人机多光谱技术能快速、无损地测定小麦地上生物量(AGB).然而,多光谱方法在计算植被特征时会产生大量具有高度相关的重复特征.因此,建立结构简单、精度高的模型对特征进行筛选具有重要意义.本文提出了一种可以同时实现特征筛选与参数优化的混合编码灰狼粒子群优化算法(CGWOPSO).同时,为评估基于该算法驱动的极限梯度提升模型(CGWOPSO-XGB)的性能,将其及基于两种流行特征筛选方法(Pearson和SHAP方法)的模型(P-XGB和S-XGB)的反演AGB表现进行了对比.结果表明,S-XGB模型优于P-XGB模型,前者均方根误差(RMSE)比后者低3.0%~16.3%;而CGWOPSO-XGB模型精度高于S-XGB模型,前者RMSE比后者低16.0%.
Feature selection of wheat field biomass model retrieved by UAV remote sensing
The unmanned aerial vehicle(UAV)multispectral technique is a popular method for rapid and nondestructive de-termination for field biomass(AGB)of wheat.However,the multispectral method usually produces a large number of highly correlated repetitive features in the calculation of vegetation features,so it is of great significance to features selection and determine the model with simple structure and high precision.In this paper,a hybrid coded Grey Wolf particle swarm opti-mization(CGWOPSO)algorithm was proposed,which can achieve both feature screening and parameter optimization.To e-valuate the performance of this method,the performance of two popular feature selection methods(Pearson and SHAP meth-ods)driven by Extreme gradient boosting model(XGBoost)for AGB was compared.The results show that the AGB model based on the SHAP method yield RMSE 3.0%to 16.3%lower than the Pearson method.The accuracy of CGWOPSO-XGB model was higher than that of XGB model based on SHAP method,and its RMSE is 16.0%lower than that of the latter.

hybrid codingGrey Wolf particle swarm optimization algorithmSHAPfeature selectionvegetation index

吴立峰、徐文浩、韩宜秀

展开 >

南昌工程学院水土保持学院,江西南昌 330099

混合编码 灰狼粒子群优化算法 SHAP 特征筛选 植被指数

2024

南昌工程学院学报
南昌工程学院

南昌工程学院学报

影响因子:0.272
ISSN:1006-4869
年,卷(期):2024.43(4)