首页|基于ESSA-LSTM的养殖工船水质溶解氧预测方法研究

基于ESSA-LSTM的养殖工船水质溶解氧预测方法研究

扫码查看
为了准确预测水质参数中的溶氧量,采用长短时记忆网络(Long Short-Term Memory,LSTM)模型,提出一种增强型麻雀搜索算法(Enhance Sparrow Search Algorithm,ESSA)以改进预测率的精确性.该算法引入了 Circle混沌映射进行种群初始化,并结合正弦余弦算法和Levy飞行策略分别对侦察者、跟踪者的位置进行更新,以促使麻雀个体能够快速跳出局部最优解.首先将ESSA与多种其他算法进行多形态基准函数对比测试,结果表明该算法在多个基准函数上展现出出色的性能和鲁棒性;随后将其应用于LSTM模型参数寻优,并与其他优化算法进行比较,结果显示基于ESSA-LSTM 模型的预测率达到99.071%,相较于基本麻雀搜索算法(Sparrow Search Algorithm,SSA)、灰狼优化算法(Grey Wolf Optimizer,GWO)、海洋捕食算法(Marine Predators Algorithm,MPA)、鲸鱼算法(Whale Optimization Algorithm,WOA)分别提升了 2.142%、6.653%、6.682%、7.714%.研究表明,使用ESSA显著提高了溶解氧预测率,并有效减少了参数设置的盲目性和时间成本.
Research on water quality dissolved oxygen prediction method based on ESSA-LSTM for aquaculture ships
In order to accurately predict the dissolved oxygen content in water quality parameters,we adopted a Long Short Term Memory(LSTM)model,and proposed an Enhanced Sparrow Search Algorithm(ESSA)to improve the accuracy of the prediction rate.Besides,to prompt individual sparrows to swiftly depart from the local optimal solution,the algorithm intro-duced Circle chaotic mapping for population initialization,and integrated sine-cosine algorithm and Levy flight strategy to up-date the positions of scouts and trackers,respectively.Firstly,we compared ESSA with various other algorithms for multi form benchmark function testing,and the results reveal that the algorithm exhibited excellent performance and robustness on mul-tiple benchmark functions.Subsequently,we used ESSA to explore LSTM model parameters and compared it with other optimi-zation strategies,and the results show that the prediction rate based on ESSA-LSTM model reached 99.071%,which was im-proved by 2.142%,6.653%,6.682%and 7.714%compared with basic Sparrow Search Algorithm(SSA),Gray Wolf Optimiza-tion Algorithm(GWO),Marine Predation Algorithm(MPA),and Whale Optimization Algorithm(WOA),respectively.The re-sults show that the use of ESSA significantly improves the prediction rate of dissolved oxygen(DO)and effectively reduces the blindness and time cost of parameter settings.

Aquaculture shipsWater quality parametersLong Short Term Memory(LSTM)Sparrow search algorithmDis-solved oxygen prediction

洪永强、谢永和、刘鲁强、董韶光、李德堂、王云杰、姜旭阳、张佳奇、王君、高炜鹏、陈卿

展开 >

浙江海洋大学船舶与海运学院,浙江舟山 316022

青岛国信发展(集团)有限公司,山东青岛 266200

中国水产科学研究院渔业机械仪器研究所,上海 200092

国信中船(青岛)海洋科技有限公司,山东青岛 266200

浙江海洋大学海洋工程装备学院,浙江舟山 316022

展开 >

养殖工船 水质参数 长短时记忆网络 麻雀搜索算法 溶解氧预测

浙江省"尖兵领雁"研发攻关计划

2022C03023

2024

南方水产科学
中国水产科学研究院南海水产研究所

南方水产科学

CSTPCD北大核心
影响因子:1.591
ISSN:2095-0780
年,卷(期):2024.20(1)
  • 1
  • 31