首页|PeakSketch:检测网络流中的top-k流的无偏和通用草图

PeakSketch:检测网络流中的top-k流的无偏和通用草图

扫码查看
通过对现有Sketch结构的研究,提出一种新的Sketch结构:PeakSketch,本文将其应用于三种任务:检测top-k频繁流,检测top-k重变化流,检测top-k持久流,从理论上证明了PeakSketch可以提供无偏估计,并且给出了算法的误差界.实验结果表明,PeakSketch的各项性能优秀,在检测top-k频繁流任务中,PeakSketch的吞吐量显著提升,特别是在分配内存小于200 kB以下时,吞吐量最高提升可以达到50%,准确率最高提升一倍,PeakSketch也展现突出的性能.
PeakSketch:Unbiased and Generalized Sketch for Detecting top-k Flows in Network Streams
By studying existing sketch structures,this paper proposes a new sketch structure called PeakSketch,which is applied to three tasks:detecting top-k frequent flows,detecting top-k heavy change flows,and detecting top-k persistent flows.Theoreti-cally,it is proven that PeakSketch can provide unbiased estimates,and the algorithm's er-ror is analyzed.Experimental results demonstrate that PeakSketch excels in various per-formance metrics.In the task of detecting top-k frequent flows,PeakSketch's throughput is significantly enhanced,especially when the allocated memory is less than 200 kB,with throughput improvements of up to 50% and precision improvements of up to double.Peak-Sketch showcases outstanding performance.

network flow measurementSketchunbiased estimationdetecting top-k flowsfrequent flowsheavy change flowspersistent flows

李旭、王超、尹慰民、周萍

展开 >

南华大学 电气工程学院,湖南 衡阳 421001

网络流测量 Sketch 无偏估计 top-k流检测 频繁流 重变化流 持久流

2024

南华大学学报(自然科学版)
南华大学

南华大学学报(自然科学版)

影响因子:0.286
ISSN:1673-0062
年,卷(期):2024.38(2)