首页|融合通道注意力机制的非规则文本识别模型

融合通道注意力机制的非规则文本识别模型

扫码查看
针对自然场景下文本字体倾斜、背景复杂导致文本识别困难问题,本文提出一种融合通道注意力机制的非规则文本检测识别模型.首先,应用CRAFT算法与图像后处理技术以字符中心和相邻字符中心概率检测非规则文本区域,实现检测区域图像背景替换、倾斜文本旋转矫正以及文本行提取;然后构建融合通道注意力机制SENet的文本识别模型SE-CRNN,通过自适应学习通道权重与数据增强等手段实现复杂背景的文本识别.试验结果表明,该模型在文本倾斜和灰度不一致的情况下仍具有较高的文本识别精度,SE-CRNN模型在测试集上的识别准确率达到84.2%.
Irregular Text Recognition Model Integrating Channel Attention Mechanism
Aiming at the problem of difficult text recognition caused by slanted text fonts and complex backgrounds in natural scenes,this paper proposes an irregular text detection and recognition model that incorporates a channel attention mechanism.First,the model combines the CRAFT detection framework and image post-processing technology to detect irregular text areas with the probability of character centers and adjacent character centers,and implements image background replacement,tilted text rotation correction and text line extraction in the detection area;then a text recognition model(SE-CRNN)incorporating with a fused channel attention mechanism named as SEnet is developed,which achieve text recognition in complex backgrounds by adaptively learning channel weights and employing data augmentation techniques.Experimental results show that the model still has high text recognition accuracy even when the text is tilted and grayscale is inconsistent.The recognition accuracy of the SE-CRNN model on the test set is as high as 84.2%.

text detectionimage post-processingattention mechanismdata enhancement

李正岩、李嵩爽、潘昱辰、邓悦、钱夔

展开 >

南京工程学院自动化学院,江苏南京 211167

文本识别 图像处理 注意力机制 数据增强

2024

南京工程学院学报(自然科学版)
南京工程学院

南京工程学院学报(自然科学版)

影响因子:0.185
ISSN:1672-2558
年,卷(期):2024.22(2)