首页|融合注意力机制的YOLOv8白菜实时检测方法

融合注意力机制的YOLOv8白菜实时检测方法

扫码查看
为了应对白菜易发于菜心部位的病害,准确识别白菜菜心位置对于实现精准施药具有关键意义.针对此问题,研究提出了一种引入注意力机制的改进型YOLOv8 算法,旨在提高模型对白菜心区域的识别能力并实现实时检测.选取了三种主流注意力机制进行对比试验,结果显示:CBAM在模型性能提升上最为显著,改进后的模型平均精度均值(mAP50)达到87.6%,精确率和召回率分别为86.3%和90.0%,处理速度保持在26 帧/s,检测试验证实模型能在复杂背景下准确识别目标.该研究成果有望显著降低农药使用量,减轻环境负担,提升农业生产的效率和可持续性.
Real-Time Detection Method for Chinese Cabbage Using YOLOv8 Integrated with Attention Mechanism
In order to cope with Chinese cabbage diseases that are prone to occur in the heart area,accurate identifica-tion of Chinese cabbage heart location is of key significance to achieve precise drug application.To address this prob-lem,an improved YOLOv8 algorithm with the introduction of an attention mechanism is proposed,aiming to improve the model's ability to identify the heart region of Chinese cabbage and achieve real-time detection.Three mainstream atten-tion mechanisms are selected for comparison experiments,and the results show that CBAM is the most significant in terms of model performance enhancement,with the improved model reaching 87.6%mean average precision(mAP50),86.3%precision and90.0%recall,and the processing speed is maintained at 26 frames per second.Detection tests confirmed that the model could accurately identify targets in complex backgrounds.The research results are expected to significantly reduce pesticide use,reduce environmental burden,and enhance the efficiency and sustainability of agricul-tural production.

YOLOv8chinese cabbage heartsreal-time detectionattention mechanism

石航、胡军、吴淼、张辉、刘昶希、李宇飞

展开 >

黑龙江八一农垦大学 工程学院,黑龙江 大庆 163319

黑龙江省保护性耕作工程技术研究中心,黑龙江 大庆 163319

YOLOv8 白菜菜心 实时检测 注意力机制

2025

农机使用与维修
农业部农机维修研究所

农机使用与维修

影响因子:0.105
ISSN:1002-2538
年,卷(期):2025.(1)