首页|针对电力系统数据缺失的暂态电压稳定评估方法

针对电力系统数据缺失的暂态电压稳定评估方法

扫码查看
针对数据缺失时暂态电压稳定评估模型精度下降的问题,提出一种基于多视图缺失数据填充和门控图神经网络的电力系统暂态电压稳定评估方法.首先,基于多视图互补的时空视图来填充缺失数据,得到完整的数据集;然后,采用修复完整的数据集训练门控图神经网络模型进行暂态电压稳定评估,评估模型要进行快速更新,以提高在线应用的性能;最后,在IEEE39节点系统算例上进行验证所提方法的有效性.仿真结果表明,本文方法可以在任何同步向量测量单元放置信息丢失和网络拓扑变化的情况下及时有效地填补缺失数据,且所用评估模型的评估性能具有显著优势.
Transient Voltage Stability Assessment Method for Power System Data Missing
Aiming at the problem of decreased accuracy of transient voltage stability assessment model when data is missing,the author proposes a transient voltage stability assessment method for power system based on multi-view missing data filling and gating graph neural network.Firstly,the missing data are filled based on the complementary spatio-temporal views of multiple views to obtain a complete dataset.Then,the restored complete dataset is used to train the gating graph neural network model for transient voltage stability assessment,and the assessment model should be updated quickly to improve the performance of online applications.Finally,the effectiveness of the proposed method is verified on the IEEE39-node system example.The simulation results show that the proposed method can fill the missing data in a timely and effective manner in case of any synchronization vector measurement unit placement information loss and network topology changes,and the evaluation performance of the used evaluation model has significant advantages.

measurement data missingspatio-temporal viewgating graph neural networktransient voltage stability assessment

姜鸣瞻、杨楚原、蒋何为、崔梓琪、袁铭洋、刘颂凯、张磊

展开 >

国网宜昌供电公司,湖北 宜昌 443000

三峡大学电气与新能源学院,湖北 宜昌 443002

测量数据缺失 时空视图 门控图神经网络 暂态电压稳定评估

国家自然科学基金

52007103

2024

内蒙古电力技术
内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司,内蒙古自治区电机工程学会

内蒙古电力技术

影响因子:0.506
ISSN:1008-6218
年,卷(期):2024.42(1)
  • 21