首页|基于XGBoost算法的瓷支柱绝缘子振动声学检测信号缺陷识别方法研究

基于XGBoost算法的瓷支柱绝缘子振动声学检测信号缺陷识别方法研究

扫码查看
针对瓷支柱绝缘子振动声学检测信号频谱分析存在误判的问题,提出基于XGBoost算法的瓷支柱绝缘子振动声学检测信号缺陷识别方法.从28个时域特征、功率密度谱特征和小波域特征中按照重要性提取了14个特征作为缺陷识别的依据,训练了瓷支柱绝缘子振动声学检测信号缺陷识别模型.结果表明,通过模型对瓷支柱绝缘子振动声学检测信号缺陷进行分类识别,准确率达到95.83%,取得了较好的缺陷识别效果.将XGBoost算法应用于现场检测信号识别,正确率达到96.6%,能够满足工程应用需要.
Research on Defect Recognition Technology of Vibro-Acoustic Detection Signal for Porcelain Pillar Insulators Based on XGBoost Algorithm
In order to solve the problem of misjudgment in the frequency spectrum analysis of vibro-acoustic detection signals for porcelain pillar insulators,this paper proposes a defect recognition method for vibro-acoustic detection signals for porcelain pillar insulators based on XGBoost algorithm.From twenty-eight time-domain features,power density spectrum features and wavelet domain features,the fourteen features are extracted according to their importance as the basis for defect recognition,and the defect recognition model of porcelain pillar insulator vibro-acoustic detection signals is trained.The results show that the accuracy rate is 95.83%when the model is used to classify and identify the defects of vibro-acoustic detection signals of porcelain pillar insulators,achieving a good defect recognition effect.The XGBoost algorithm is applied to on-site signal recognition,with an accuracy rate of 96.6%,which can meet the needs of the engineering application.

porcelain pillar insulatorvibro-acousticXGBoost algorithmdefect identification

马鹏、姜伟基、杜鑫、杨勇、何予莹、王军

展开 >

内蒙古电力(集团)有限责任公司阿拉善供电分公司,内蒙古 巴彦浩特 750306

瓷支柱绝缘子 振动声学 XGBoost算法 缺陷识别

内蒙古电力(集团)有限责任公司阿拉善供电分公司科技项目

2021-47

2024

内蒙古电力技术
内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司,内蒙古自治区电机工程学会

内蒙古电力技术

影响因子:0.506
ISSN:1008-6218
年,卷(期):2024.42(1)
  • 29