首页|基于SF6分解产物分类规划的GIS放电故障分析

基于SF6分解产物分类规划的GIS放电故障分析

扫码查看
为提高气体绝缘开关(Gas Insulated Switchgear,GIS)的安全评价能力,在基于机器学习算法的GIS诊断模型的鲁棒特性基础上,研究由阿伦尼乌斯化学反应模型处理的不同故障类型的经验概率函数,利用6种机器学习算法建立放电故障和绝缘缺陷模型,通过学习组成系统中不同气体(SO2、SOF2、SO2F2、CF4、CO2等)体积分数的数据集及其比值来训练识别算法.结果表明,经验概率模型可以有效识别GIS多种绝缘缺陷及其共存状态,SO2F2和SO2体积分数比为4.2是高能放电状态的临界点,对故障预警具有重要意义;在基于高斯分布的GIS绝缘缺陷测试结果图中,y≈0.15的区域是多种放电故障共存的区域,需重点关注.
GIS Discharge Fault Analysis Based on SF6 Decomposition Product Classification Planning
In order to improve the safety evaluation ability of GIS,based on the robustness of GIS diagnostic model on the basis of machine learning algorithm,empirical probability functions of different fault types processed by Arrhenius chemical reaction model are studied.Six machine learning algorithms are used to establish discharge fault and insulation defect models.The recognition algorithm is trained by learning the aggregate data sets and their ratios of the volume fractions for different gases(SO2,SOF2,SO2F2,CF4,CO2)in the constituent system.The results show that the empirical probability model can effectively identify various GIS insulation defects and their coexistence states.The volume fraction ratio of SO2F2 to SO2 is 4.2,which is a critical point of high energy discharge state and is of great significance for fault warning.In the GIS insulation defect test result graph based on Gaussian distribution,the region y≈0.15 is where multiple discharge faults coexist,which needs to be paid close attention to.

gas insulated switchgearmachine learning algorithmSF6 decomposition productsinsulation defectdischarge fault

肖明伟、何凯琳、杨沛豪

展开 >

国网安徽省电力有限公司芜湖供电公司,安徽 芜湖 241000

中国能源建设集团西北电力试验研究院有限公司,西安 710054

西安交通大学 电气工程学院,西安 710049

西安热工研究院有限公司,西安 710054

展开 >

气体绝缘开关 机器学习算法 SF6分解产物 绝缘缺陷 放电故障

国网安徽省电力公司芜湖供电公司科研项目

B312C022000C

2024

内蒙古电力技术
内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司,内蒙古自治区电机工程学会

内蒙古电力技术

影响因子:0.506
ISSN:1008-6218
年,卷(期):2024.42(1)
  • 23