首页|基于AHP-K-Means-LSTM模型的短期电力负荷预测研究

基于AHP-K-Means-LSTM模型的短期电力负荷预测研究

扫码查看
为进一步提升预测效果,从权重和聚类的维度考虑,提出了一种AHP-K-Means-LSTM组合模型的短期负荷预测方法,首先,利用层次分析法(Analytic Hierarchy Process,AHP)计算出影响负荷预测的因素权重,结合改进K-Means(K均值)聚类算法选取样本中效果最好的一组聚类结果,然后,将该样本代入到长短期记忆(Long Short-Term Memory,LSTM)神经网络模型中进行训练,将输出结果与真实负荷进行对比分析.以辽宁省沈阳地区2022年电力负荷数据集为例进行仿真实验验证,结果表明,所提方法在不同季节的工作日和节假日中的负荷预测精度较其他预测方法均有所提升.
Research on Short Term Power Load Forecasting Based on AHP-K-Means-LSTM Model
In order to further improve the prediction performance,this paper proposes a short-term load forecasting method using the AHP-K-Means-LSTM combination model from the dimensions of weight and clustering.Firstly,the Analytic Hierarchy Process(AHP)is used to calculate the weights of factors that affect load forecasting.The improved K-Means clustering algorithm is combined to select the most effective clustering results from the samples.Then,the sample is brought into the Long Short-Term Memory(LSTM)neural network model for training,and the output results are compared and analyzed with the actual load.Taking the 2022 electricity load dataset in Shenyang of Liaoning Province as an example for simulation verification,the results of which show that the proposed method has improved load forecasting accuracy compared to traditional methods in working days and holidays in different seasons.

short term load forecastingbig data analysisAnalytic Hierarchy ProcessK-Means clusteringLSTM neural network

章家栋、张永庆、陈修鹏、单偶双、张巍巍

展开 >

国网沈阳供电公司,沈阳 110006

国网本溪供电公司,辽宁 本溪 117000

国网保定供电公司,河北 保定 071000

沈阳市公安局,沈阳 110000

展开 >

短期负荷预测 大数据分析 层次分析法 K-Means聚类 LSTM神经网络

2024

内蒙古电力技术
内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司,内蒙古自治区电机工程学会

内蒙古电力技术

影响因子:0.506
ISSN:1008-6218
年,卷(期):2024.42(6)