首页|Hermite-Hadamard不等式的一类推广

Hermite-Hadamard不等式的一类推广

扫码查看
基于Katugampola分数阶积分和对数积分,对Hermite-Hadamard不等式进行了加细和推广.引进了二元函数的Katugampola分数阶积分的定义,并分别利用一元函数的凸性和二元函数的协同凸性,建立了一类Hermite-Hadamard型不等式.当取特殊函数时,分别得到了一元凸函数和二元协同凸函数的Hermite-Had-amard不等式、Hermite-Hadamard型分数阶积分不等式和Hermite-Hadamard型对数积分不等式.
A Kind of Generalization for Hermite-Hadamard Inequality
Based on Katugampola fractional integration and logarithmic integration,Hermite-Hadamard inequali-ty has been refined and generalized.The definition of Katugampola fractional integrals of binary functions is intro-duced,and a class of Hermite-Hadamard type inequalities is established by using the convexity of univariate func-tion and the coordinated convexity of bivariate function.Hermite-Hadamard inequality,Hermite-Hadamard type fractional integral inequality and Hermite-Hadamard type logarithmic integral inequality of univariate convex func-tions and bivariate coordinated convex functions are obtained when some special function is considered.

convex functioncoordinated convex functionHermite-Hadamard inequalityKatugampola fraction-al integrallogarithmic integral

包琳娜、王淑红

展开 >

内蒙古民族大学数学科学学院,内蒙古通辽 028043

凸函数 协同凸函数 Hermite-Hadamard不等式 Katugampola分数阶积分 对数积分

2025

内蒙古民族大学学报(自然科学版)
内蒙古民族大学

内蒙古民族大学学报(自然科学版)

影响因子:0.444
ISSN:1671-0185
年,卷(期):2025.40(1)