首页|基于改进的YOLOv5苹果叶部病害识别研究

基于改进的YOLOv5苹果叶部病害识别研究

扫码查看
[目的]提出一种基于改进YOLOv5 模型的病害目标检测算法,实现对苹果叶部病害的自动识别,解决YOLOv5检测模型存在的漏检和误检问题。[方法]基于卷积神经网络改进的YOLOv5 模型,采用加权双向特征金字塔网络(BiFPN)特征融合方法,有效改善PANet对多尺度特征融合的不良影响,并加入CBAM模块,使网络能更准确地定位和识别苹果叶部病害,建立一种苹果叶部病害检测的算法模型;使用ATCSP模块和自上而下的特征融合方法来增强模型对多尺度疾病的检测效果,并将该模型与SSD、YOLOv4、YOLOv6 和YOLOv7 模型进行对比。[结果]改进的YOLOv5 检测算法模型显著提高了苹果叶部病害检测的精度,对比原始算法,精度(P)提升了 5。1%,达到 90。8%;平均精度均值(mAP)提高了 1。2%,达到 93。4%;模型大小减少 21。4 MB。改进后的YOLOV5 算法精度比SSD、YOLOv4、YOLOv6 和YOLOv7 模型分别高11。3、4。4、4。2、3。6 个百分点。[结论]提出了一种基于卷积神经网络改进的YOLOv5苹果叶部病害检测模型,改进后的YOLOv5模型检测速度快、准确率高,且模型较小,能够实现对苹果叶部病害的自动识别。
Research on apple leaf disease detection based on improved YOLOv5
[Objective]Propose a disease target detection algorithm based on improved YOLOv5 model,to achieve automatic recognition of apple leaf diseases and solve the problems of miss and false detection in the YOLOv5 detection model.[Methods]Based on the YOLOv5 model improved by convolutional neural network,weighted bidirectional feature pyramid network(BiFPN)feature fusion method was used to effectively improve the adverse effect of PANet on multi-scale feature fusion.The CBAM module was added to enable the network to more accurately locate and identify apple leaf diseases and establishing an algorithm model for detecting apple leaf diseases.The ATCSP module and top-down feature fusion method were used to enhance the detection performance of the model for multi-scale diseases.The model was compared with SSD,YOLOv4,YOLOv6,and YOLOv7 models.[Results]The improved YOLOv5 detection algorithm model significantly improved the accuracy of apple leaf disease detection.Compared with the original algorithm,accuracy(P)increased by 5.1%,reaching 90.8%;average precision mean(mAP)increased by 1.2%,reaching 93.4%;the model size reduced by 21.4 MB.The accuracy of improved YOLOV5 algorithm was 11.3,4.4,4.2,and 3.6 percentage points higher than SSD,YOLOv4,YOLOv6,and YOLOv7 models,respectively.[Conclusion]A convolutional neural network-based improved YOLOv5 apple leaf disease detection model was proposed.The improved YOLOv5 model had fast detection speed,high detection accuracy,and small size,which can achieve automatic recognition of apple leaf diseases.

YOLOv5AppleLeaf diseasesIdentificationConvolutional neural network

赵兴、邬欢欢

展开 >

塔里木大学信息工程学院,新疆阿拉尔 843300

塔里木绿洲农业教育部重点实验室,新疆阿拉尔 843300

YOLOv5 苹果 叶部病害 识别 卷积神经网络

兵团财政科技计划项目南疆重点产业创新发展支撑计划塔里木大学校长基金项目

2022DB005TDZKZD202104

2024

北方农业学报
内蒙古自治区农牧业科学院 内蒙古自治区农学会

北方农业学报

CSTPCD
影响因子:0.316
ISSN:2096-1197
年,卷(期):2024.52(1)
  • 37