首页|原发性胆汁性胆管炎患者发生呼吸系统细菌感染的列线图预测模型构建及评价

原发性胆汁性胆管炎患者发生呼吸系统细菌感染的列线图预测模型构建及评价

Construction and Evaluation of a Nomogram Prediction Model for Respiratory Bacterial Infection in Patients with Primary Biliary Cholangitis

扫码查看
目的 探讨原发性胆汁性胆管炎(primary biliary cholangitis,PB C)患者发生呼吸系统细菌感染的影响因素,建立列线图预测模型并进行评价.方法 根据是否发生呼吸系统细菌感染将2012年9月至2022年9月于昆明市第三人民医院肝病科住院确诊的269例PBC患者分为细菌感染组和非细菌感染组,并收集患者的一般资料、入院合并症及实验室检查结果进行回顾性分析.经单因素分析筛选变量,通过多因素LR偏似然估计法Logistic回归分析影响因素,据此构建列线图预测模型.模型评价采用受试者工作特征曲线(receiver operator characteristic curve,ROC)和校准曲线(calibration curve).结果 纳入的研究对象中发生呼吸系统细菌感染的患病率为14.50%.单因素及多因素LR偏似然估计法Logistic回归分析显示,抗gp210 抗体阳性(OR=2.598,95%CI:1.193~5.657,P=0.016)、抗 RO-52 抗体阳性(OR=2.860,95%CI:1.321~6.193,P=0.008)、高中性粒细胞计数(OR=1.494,95%CI:1.224~1.824,P<0.001)是 PBC患者发生呼吸系统细菌感染的独立危险因素;高血红蛋白水平(OR=0.982,95%CI:0.969,0.996,P=0.009)是其独立保护因素.Hosmer-lemeshow检验结果(x2=3.718,P=0.882)表明由以上因素构建的列线图预测模型具有较好的拟合度.受试者工作特征曲线(receiver operator characteristic curve,ROC)显示曲线下面积(area under the curve,AUC)为 0.769(95%CI:0.682~0.857,P<0.001),敏感度为 64.10%,特异度为80.90%.使用Bootstrap法进行1000次重复抽样的内部验证,结果显示,MAE=0.015,表明拟合模型的准确性尚可,发生呼吸系统细菌感染的实际值和预测值之间有较好的一致性.结论 本研究构建的列线图预测模型具有较好的区分能力和准确性,能为临床医师初步判断PBC患者发生呼吸系统细菌感染的风险提供参考依据,有助于实现早期干预和治疗,改善患者预后.
Objective To explore the influencing factors of respiratory bacterial infection in patients with primary biliary cholangitis(PBC),and to establish and evaluate a nomogram prediction model.Methods Ac-cording to the presence or absence of respiratory bacterial infection,a total of 269 PBC patients hospitalized in the Department of Hepatology,the Third People's Hospital of Kunming from September 2012 to September 2022 were divided into bacterial infection group and non-bacterial infection group,and the general data,co-morbidities and laboratory tests of the patients were collected for retrospective analysis.The variables were screened by univariate analysis,and the influencing factors were analyzed by multivariate LR partial likelihood estimation method Logistic regression,based on which a nomogram prediction model was constructed.The re-ceiver operator characteristic curve(ROC)and calibration curve were used for model evaluation.Results The prevalence of respiratory bacterial infection was 14.5%.Univariate and multivariate LR partial likelihood esti-mation Logistic regression analysis showed that anti-gp210 antibody positive(OR=2.598,95%CI:1.193~5.657,P=0.016),anti-Ro-52 antibody positive(OR=2.860,95%CI:1.321~6.193,P=0.016),and anti-Ro-52 antibody positive(OR=2.860,95%CI:1.321~6.193,P=0.008)and high neutrophil count(OR=1.494,95%CI:1.224~1.824,P<0.001)were independent risk factors for respiratory bacterial infec-tion in PBC patients.High hemoglobin level(OR=0.982,95%CI:0.969~0.996,P=0.009)was an indepen-dent protective factor.Hosmer-lemeshow test results(x2=3.718,P=0.882)showed that the nomogram pre-diction model constructed by the above factors had a good degree of fit.the receiver operator characteristic curve(ROC)showed that the area under the curve(AUC)0.769(95%CI:0.682~0.857,P<0.001).The sensitiv-ity was 64.1%and the specificity was 80.9%.Bootstrap method was used for internal validation with 1000 re-peated samples.The results showed that the mean absolute error was 0.015,indicating that the accuracy of the fitting model was acceptable,and there was a good agreement between the actual value and the predicted value of respiratory bacterial infection.Conclusion The nomogram prediction model constructed in this study has good discrimination ability and accuracy,which can provide a reference for clinicians to preliminarily judge the risk of respiratory bacterial infection in patients with PBC,which is helpful to achieve early intervention and treatment and improve the prognosis of patients.

primary biliary cholangitisrespiratoryBacterial infectionRisk factorNomogram

李秉翰、薛淋淋、刘立

展开 >

大理大学公共卫生学院,云南大理 671000

昆明市第三人民医院云南省传染病临床医学中心,昆明 650041

原发性胆汁性胆管炎 呼吸系统 细菌感染 危险因素 列线图

2024

内蒙古医学杂志
内蒙古自治区医学会

内蒙古医学杂志

影响因子:0.537
ISSN:1004-0951
年,卷(期):2024.56(2)
  • 23