首页|基于TCGA数据库构建子宫内膜癌预后模型

基于TCGA数据库构建子宫内膜癌预后模型

Construction of Prognostic Model of Endometrial Cancer Based on TCGA Database

扫码查看
目的 采用生物信息学方法构建子宫内膜癌(EC)患者预后的模型.方法 从TCGA数据库下载与EC相关预后数据,将从TCGA中下载的数据分为训练组(Train组)和验证组(Test组).使用Train组中的数据建立预后模型,并在Test组中验证此预后模型是否具有良好的预测能力.结果 采用单因素Cox回归筛选出229个与生存非常相关的基因,筛选出有特异性的用于建立风险模型的基因为16个.利用随机生存森林算法(random survival forests algorithm)二次筛选出9个与生存较相关的基因用来组成风险预后模型,其中 MGAT4A、SRD5A1、MBOAT2、EPHA10、L1CAM、CHODL、AC010729.1、RP11-66D17、RP5-1158E12.3均被认为是HR>1的风险效应因子(P<0.05),风险评分计算公式为:risk score=∑iwixi+1.802659.risk score的评判公式对这些样本进行了高风险和低风险的评估,在Train组、Test组绘制K-M生存曲线,结果显示高风险组总生存率均低于低风险组(P<0.05).结论 (1)通过风险模型计算的评分可以将子宫内膜癌患者分成高危组及低危组,两组生存状态比较差异有统计学意义(P<0.001);(2)此预后相关风险模型可以有效预测EC患者预后,为EC临床诊疗提供新依据.
Objective To construct a prognostic model for patients with endometrial cancer(EC)by bioin-formatics.Methods To download EC-related prognostic data from the TCGA database,the data downloaded from the TCGA were divided into Train group and Test group.A prognostic model was established using data from the Train group,and whether the prognostic model had a good predictive ability was verified in the Test group.Results 229 genes highly related to survival were screened by single-factor Cox regression,and 16 genes with specific significance were screened for establishing the risk model.Using random forest survival(ran-domsurvivalforestsalgorithm)algorithm 9 secondary screening of the genes associated with survival to risk prog-nostic model,MGAT4A,SRD5A1,MBOAT2,EPHA10,L1CAM,CHODL,AC010729.1,RP11-66D17,RP5-1158E12.3 are all considered to be risk effect factors of HR>1(P<0.05).The calculation formula of risk score is as follows:risk score=∑iwixi+1.802659.These samples were evaluated for high and low risk by risk score evaluation formula.K-M survival curves were drawn in the Train and Test groups.The results show that the overall survival rate of the high-risk group was lower than that of the low-risk group(P<0.05).Conclusion(1)Patients with endometrial cancer were divided into high and low risk groups by the score calcu-lated by the risk model,and the difference in survival status between the two groups was statistically significant(P<0.001).(2)This prognostic risk model can effectively predict the prognosis of EC patients and provide a new basis for the clinical diagnosis and treatment of EC.

the cancer genome atlasendometrial carcinomaprognostic modelbioinformatics

陈霞辉、王轶琳、刘翔宇、王欣

展开 >

内蒙古科技大学包头医学院研究生院,内蒙古包头 014040

内蒙古自治区人民医院内蒙古临床医学院,呼和浩特 010017

内蒙古自治区人民医院妇产科,呼和浩特 010017

癌症基因组图谱 子宫内膜癌 预后模型 生物信息学

内蒙古自治区人民医院2023年公立医院科研联合基金项目内蒙古自治区人民医院院内基金项目内蒙古医科大学科技百万工程联合项目

2023GLLH01072019YN12YKD2018KJBWLH061

2024

内蒙古医学杂志
内蒙古自治区医学会

内蒙古医学杂志

影响因子:0.537
ISSN:1004-0951
年,卷(期):2024.56(3)