首页|基于EMD降噪与BP神经网络的变速器滚动轴承故障诊断

基于EMD降噪与BP神经网络的变速器滚动轴承故障诊断

扫码查看
变速器是汽车正常行驶的关键部件,变速器滚动轴承在动力传动过程中,承受着极高的机械负荷与热负荷.变速器滚动轴承故障诊断的研究对于提高车辆行驶的安全性有着重要的意义.结合滚动轴承振动故障诊断的特点和需求,本文提出一种经验模态分解(EMD)与BP 神经网络的故障诊断方法.该方法先将采集的振动信号经过EMD 分解成一系列的含有主要特征信息的固有模态函数(IMF),然后通过求取IMF信息熵提取出轴承故障特征信号,再结合BP神经网络分类器,可有效地诊断并识别变速器滚动轴承故障,识别准确率达到 80.0%以上.
Fault Diagnosis of Transmission Rolling Bearing Based on EMD De-noising and BP Neural Network
As one of the most stringent components in automobile driver system,transmission rolling bearing with-stands high mechanical load and thermal load during transferring the driving force.The research on fault diagnosis of transmission rolling bearings is of great significance for improving the safety of vehicles.According to the characteristics and requirements of rolling bearing vibration fault diagnosis,a new method of fault diagnosis based on empirical mode de-composition(EMD)and BP neural network is proposed in this paper.First,the vibration signals are decomposed into a series of intrinsic mode functions(IMF)with main characteristic information by EMD,and then the characteristic signals of bearing faults are extracted by IMF information entropy,combined with BP neural network classifier,it can effectively diagnose and identify the fault of transmission rolling bearing,and the recognition accuracy is over 80.0%.

Transmission rolling bearingEMD de-noisingKurtosis criterionShannon entropyBP neural network

丁伟

展开 >

江苏信息职业技术学院汽车与智能交通学院,江苏 无锡 214153

变速器滚动轴承 EMD降噪 峭度准则 信息熵 BP神经网络

江苏高校"青蓝工程"资助

2024

内燃机与配件
石家庄金刚内燃机零部件集团有限公司

内燃机与配件

影响因子:0.095
ISSN:1674-957X
年,卷(期):2024.(2)
  • 11