首页|基于遗传算法优化BP神经网络的内燃机轴承故障诊断方法

基于遗传算法优化BP神经网络的内燃机轴承故障诊断方法

扫码查看
针对内燃机轴承故障发生率高、诊断困难的问题,提出了一种基于变分模态分解与遗传算法优化 BP神经网络的轴承故障诊断方法。使用轴承数据集对该方法进行验证。结果表明:该方法在多种工况下诊断准确率均可达到 96%以上,可以准确的识别轴承各故障类型,在一定程度上解决了内燃机轴承故障诊断困难的问题。
Optimization of BP Neural Network Based on Genetic Algorithm for Fault Diagnosis of Internal Combustion Engine Bearings
A bearing fault diagnosis method based on variational modal decomposition and genetic algorithm optimized BP neural network is proposed to address the high occurrence rate and difficult diagnosis of bearing faults in internal combustion engines.The bearing data set of Jiangnan University is used to verify the method.The results show that the diagnostic accuracy of this method can reach over 96%under various working condi-tions,and it can accurately identify various types of bearing faults,solving the problem of difficult bearing fault diagnosis in internal combustion engines to a certain extent.

Modal decompositionMachine learningRolling bearingsFault diagnosis

汤捷中

展开 >

沈阳航空航天大学 航空发动机学院,辽宁 沈阳 110136

模态分解 机器学习 滚动轴承 故障诊断

2024

内燃机与配件
石家庄金刚内燃机零部件集团有限公司

内燃机与配件

影响因子:0.095
ISSN:1674-957X
年,卷(期):2024.(3)
  • 5