首页|一种基于数据驱动的轴承异常检测与故障评估方法

一种基于数据驱动的轴承异常检测与故障评估方法

扫码查看
针对样本数据极度不平衡下的轴承健康状态监测问题,本文提出一种生成对抗网络的异常检测方法.首先模型训练只需使用正常状态下的样本即可完成,然后通过网格搜索方法确定异常状态判定的阈值,最后对检测的故障做相似性评估,最后基于公开数据集开展方法有效性验证,实验结果表明,本方法对不同故障的检测准确率在98%以上,并且可以对故障的不同程度做出评估.
An Approach for Bearing Anomaly Detection and Fault Assessment Based on Data-driven Techniques
In the context of highly imbalanced sample data in bearing health monitoring,this article proposes an a-nomaly detection approach employing a generative adversarial network(GAN).The model's training necessitates solely the utilization of samples from normal states.Subsequently,an anomaly detection threshold is determined through a grid search method.Following this,a similarity assessment is conducted on the detected faults.Finally,the effectiveness of the method is validated using a publicly available dataset.Experimental results demonstrate that this approach achieves a detection accuracy of over 95%for various faults and can provide assessments of the severity of these faults.

Rolling bearingsImbalanced dataAnomaly detectionGenerative adversarial networks

曾继宇

展开 >

湖南工业大学,湖南株洲 412007

滚动轴承 不平衡样本 异常检测 生成对抗网络

2024

内燃机与配件
石家庄金刚内燃机零部件集团有限公司

内燃机与配件

影响因子:0.095
ISSN:1674-957X
年,卷(期):2024.(5)
  • 6