内燃机与配件2024,Issue(5) :74-76.

一种基于数据驱动的轴承异常检测与故障评估方法

An Approach for Bearing Anomaly Detection and Fault Assessment Based on Data-driven Techniques

曾继宇
内燃机与配件2024,Issue(5) :74-76.

一种基于数据驱动的轴承异常检测与故障评估方法

An Approach for Bearing Anomaly Detection and Fault Assessment Based on Data-driven Techniques

曾继宇1
扫码查看

作者信息

  • 1. 湖南工业大学,湖南株洲 412007
  • 折叠

摘要

针对样本数据极度不平衡下的轴承健康状态监测问题,本文提出一种生成对抗网络的异常检测方法.首先模型训练只需使用正常状态下的样本即可完成,然后通过网格搜索方法确定异常状态判定的阈值,最后对检测的故障做相似性评估,最后基于公开数据集开展方法有效性验证,实验结果表明,本方法对不同故障的检测准确率在98%以上,并且可以对故障的不同程度做出评估.

Abstract

In the context of highly imbalanced sample data in bearing health monitoring,this article proposes an a-nomaly detection approach employing a generative adversarial network(GAN).The model's training necessitates solely the utilization of samples from normal states.Subsequently,an anomaly detection threshold is determined through a grid search method.Following this,a similarity assessment is conducted on the detected faults.Finally,the effectiveness of the method is validated using a publicly available dataset.Experimental results demonstrate that this approach achieves a detection accuracy of over 95%for various faults and can provide assessments of the severity of these faults.

关键词

滚动轴承/不平衡样本/异常检测/生成对抗网络

Key words

Rolling bearings/Imbalanced data/Anomaly detection/Generative adversarial networks

引用本文复制引用

出版年

2024
内燃机与配件
石家庄金刚内燃机零部件集团有限公司

内燃机与配件

影响因子:0.095
ISSN:1674-957X
参考文献量6
段落导航相关论文