首页|一种刚度梯度结构宏观设计方法

一种刚度梯度结构宏观设计方法

扫码查看
本文基于SIMP密度插值法建立弹性模量与密度之间的关系,根据插值法以及水平集思想以宏观结构整体刚度或柔度为优化目标,单元的相对密度为设计变量,同时以宏观结构的整体体积和静力学方程为约束条件,建立宏观层面的优化模型,并结合具体的算例实现了具有刚度梯度特性的宏观结构区域的划分,得到界面清晰的宏观刚度梯度结构.在优化设计中,运用拓扑优化方法得到大量中间密度单元,故在插值时选取较小惩罚因子,不仅能克服离散型变量优化问题,又可以避免"棋盘"现象的发生,得到大量 0 到 1 之间变化的灰色单元,随后对相近的中间密度单元采用平均化处理,以平均后的密度值来代替原密度值,进而可以得到界限清晰的拓扑结构.由于在设计时采用的是单一材料,通过求解优化模型,并随着密度的分层就可以得到刚度呈梯度变化的宏观梯度结构,实现具有刚度梯度特性的宏观结构区域的划分,并结合具体的悬臂梁结构,得到不同情况下各子域中的材料用量,给宏观刚度结构的研究提供了一定的参考价值.
Macro Design Method of Stiffness Gradient Structur
In this paper,the relationship between elastic modulus and density is established based on SIMP density interpolation method.According to the interpolation method and the idea of level set,the overall stiffness or flexibility of macro-structure is taken as the optimization goal,the relative density of elements is taken as the design variable,and the overall volume and statics equation of macro-structure are taken as the constraints,so as to establish the macro-level opti-mization model.Combined with specific examples,the macro-structure regions with stiffness gradient characteristics are divided,and the macro-stiffness gradient structure with clear interface is obtained.In the optimization design,a large number of intermediate density units are obtained by topological optimization method,so choosing a smaller penalty factor in interpolation can not only serve the optimization problem of discrete variables,but also avoid the occurrence of"chess-board"phenomenon,and obtain a large number of gray units ranging from 0 to 1.Then,the similar intermediate density units are averaged,and the original density value is replaced by the averaged density value,so that a clearly defined topol-ogical structure can be obtained.Because a single material is used in the design,by solving the optimization model and lay-ering with density,the macro-gradient structure with gradient stiffness can be obtained,and the macro-structural regions with gradient stiffness characteristics can be divided.Combined with the concrete cantilever beam structure,the material consumption in each sub-domain under different conditions can be obtained,which provides certain reference value for the study of macro-stiffness structure.

StiffnessTopology optimizationGradient structureMacro

李荣、曹剑

展开 >

武汉东湖学院,湖北 武汉 430212

刚度 拓扑优化 梯度结构 宏观

2024

内燃机与配件
石家庄金刚内燃机零部件集团有限公司

内燃机与配件

影响因子:0.095
ISSN:1674-957X
年,卷(期):2024.(21)