首页|基于改进ESMD的齿轮故障声发射信号识别

基于改进ESMD的齿轮故障声发射信号识别

扫码查看
针对齿轮故障声发射信号中噪声对极点对称模态分解(ESMD)结果的影响,以及麻雀搜索算法(SSA)在优化支持向量机(SVM)参数时陷入局部最优解的问题,提出了一种改进 ESMD 方法结合改进麻雀搜索算法优化支持向量机(ISSA-SVM)的故障模式识别方法.经过实验验证,该方法可以实现充分的特征提取以及高准确率的故障识别,故障识别平均准确率达到 97.664%.
Fault Recognition of Gear Acoustic Emission Signals Based on Improved ESMD
Aiming at addressing the influence of noise on the Empirical Mode Decomposition(ESMD)decomposition results of gear fault acoustic emission signals,as well as the issue of sparrow search algorithm(SSA)optimized Support Vector Machine(SVM)parameters getting stuck in local optimal solutions,this study proposes an improved ESMD method combined with an improved sparrow search algorithm optimized Support Vector Machine(ISSA-SVM)for fault pattern recognition.Experimental results demonstrate that this method achieves comprehensive feature extraction and high accuracy in fault recognition,with an average fault recognition accuracy of up to 97.664%.

GearAcoustic emissionExtreme-point symmetric mode decompositionSupport vector machines

鲍庆祥、于洋

展开 >

沈阳工业大学 信息科学与工程学院,辽宁 沈阳 110870

齿轮 声发射 经验模态分解 支持向量机

2024

内燃机与配件
石家庄金刚内燃机零部件集团有限公司

内燃机与配件

影响因子:0.095
ISSN:1674-957X
年,卷(期):2024.(21)