首页|基于自动提取特征和IWOA-SVR模型的锂离子电池SOH预测

基于自动提取特征和IWOA-SVR模型的锂离子电池SOH预测

扫码查看
现有的锂电池健康状态(state of health,SOH)估计模型输入特征多、需要人工选择、计算量大,针对这些问题提出了一种自动提取电池老化特征(aging characteristics,AC)的简化预测模型。该模型利用改进鲸鱼算法(Improved Whale Optimization Algorithm,IWOA)自动寻找特征作为输入,再用改进的鲸鱼算法优化支持向量回归(Support Vector Regression,SVR)的参数。在NASA锂电池数据集上的仿真结果表明,该模型不仅相较于BP神经网络等方法预测精度有所提高,而且简化了预测的流程,能有效避免人工试错。最后在 7 号锂电池上验证了该模型的普适性。
SOH Prediction of Lithium-ion Batteries Based on Automatic Feature Extraction and IWOA-SVR Model
The existing state of health(SOH)estimation model for lithium batteries has many input features,requires manual selection,and is computationally intensive,and a simplified prediction model that automatically extracts battery degradation features is proposed to solve these problems.The model uses the Whale Optimiza-tion Algorithm(WOA)to automatically find features as input,and then uses the improved whale algorithm to optimize the parameters of Support Vector Regression(SVR).The simulation results on the NASA lithium bat-tery dataset show that the model not only improves the prediction accuracy compared with BP neural network and other methods,but also simplifies the prediction process and can effectively avoid manual trial and error.Final-ly,the universality of the model is verified on the No.7 lithium battery.

Lithium batteryState of healthWhale optimization algorithmSupport vector machine regression

石善硕、高志彬

展开 >

青岛理工大学,山东 青岛 266000

锂电池 健康状态 鲸鱼优化算法 支持向量机回归

2024

内燃机与配件
石家庄金刚内燃机零部件集团有限公司

内燃机与配件

影响因子:0.095
ISSN:1674-957X
年,卷(期):2024.(22)