首页|基于MEA-WPT的轴承声发射信号处理

基于MEA-WPT的轴承声发射信号处理

扫码查看
滚动轴承的工作环境噪声会对轴承声发射信号的处理造成困难,所以提出了一种基于思维进化启发式算法优化小波包变换的轴承声发射信号降噪方法。该方法运用MEA算法优化了 WPT算法在信号处理任务中存在小波函数和小波包分解层数组合难寻优问题,并且,依据优化小波包分解的节点分量和峭度指标分析(KI)进行信号重构和包络分析。通过提取出的轴承故障特征频率与理论特征频率做对比,验证了所提方法在轴承声发射信号处理中的有效性。
Bearing Acoustic Emission Signal Processing Based on MEA-WPT
The noise of the working environment of rolling bearings will make it difficult to process the bearing AE signal,so a noise reduction method of the bearing AE signal based on the thinking evolution heuristic algorithm to opti-mize the wavelet packet transform is proposed.In this method,the MEA algorithm is used to optimize the problem that the WPT algorithm has the problem that it is difficult to find the optimal combination of wavelet function and wavelet packet decomposition layer in the signal processing task,and the signal reconstruction and envelope analysis are carried out according to the node component and kurtosis index analysis(KI)of the optimized wavelet packet decomposition.By comparing the extracted bearing fault eigenfrequencies with the theoretical eigenfrequencies,the effectiveness of the pro-posed method in bearing acoustic emission signal processing is verified.

Rolling bearingAcoustic emissionWavelet packet transformation

孙茂武、于洋

展开 >

沈阳工业大学信息科学与工程学院,辽宁沈阳 110870

滚动轴承 声发射 小波包变换

2024

内燃机与配件
石家庄金刚内燃机零部件集团有限公司

内燃机与配件

影响因子:0.095
ISSN:1674-957X
年,卷(期):2024.(23)