首页|基于ECA-ConvNeXt的滚动轴承故障模式识别

基于ECA-ConvNeXt的滚动轴承故障模式识别

扫码查看
针对滚动轴承故障声发射信号的非平稳性、特征提取的高度复杂性以及智能诊断模型特征提取不充分等问题,提出了 一种变分模态分解(VMD)参数自适应寻优结合高效通道注意力卷积神经网络(ECA-Conv-NeXt)的故障模式识别方法.经实验证明,所提方法可实现充分的特征信息提取以及高准确率的故障模式识别,故障识别平均准确率可达97.6%.
Rolling Bearing Failure Mode Identification Based on ECA-ConvNeXt
In order to address the issues of non-stationarity in the acoustic emission signal of rolling bearing faults,the high complexity of feature extraction,and the inadequate feature extraction of intelligent diagnostic models,a fault mode recognition method based on Variational Mode Decomposition(VMD)parameter adaptive optimization combined with Efficient Channel Attention Pure Convolutional Neural Network(ECA-ConvNeXt)was proposed.Experiments show that the proposed method can achieve effective feature information extraction and high accuracy in fault mode recognition,with an average fault identification accuracy of 97.6%.

Rolling bearingAcoustic emissionVariational mode decompositionConvolutional Neural Network

吴立军、于洋

展开 >

沈阳工业大学信息科学与工程学院,辽宁沈阳 110870

滚动轴承 声发射 变分模态分解 卷积神经网络

2024

内燃机与配件
石家庄金刚内燃机零部件集团有限公司

内燃机与配件

影响因子:0.095
ISSN:1674-957X
年,卷(期):2024.(23)