首页|基于注意力机制的CNN-LSTM建筑能耗预测方法研究

基于注意力机制的CNN-LSTM建筑能耗预测方法研究

扫码查看
建筑能耗分析预测是提高建筑用能效率的关键技术,是响应国家"双碳"战略的重要手段.由于建筑能耗数据具有强时序性特点,利用传统的深度学习技术难以有效提取数据中的高维特征,且易丢失重要信息.为此,本文提出了一种基于注意力机制的CNN-LSTM建筑能耗预测方法,该方法利用CNN提取能耗数据中的空间特征、LSTM处理时序数据、注意力机制确定特征权重,提高了模型预测精度.
Research on a CNN-LSTM building energy consumption prediction method based on attention mechanism
The analysis and prediction of building energy consumption is a key technology to improve the energy efficiency of buildings and an important means to address the national"dual-carbon"strategy.Due to the strong temporal characteristics of building energy consumption data,it is difficult to effectively extract high-dimensional features in the data by using traditional deep learning techniques,and it is easy to lose important information.Therefore,this paper proposes a CNN-LSTM building energy consumption prediction method based on the attention mechanism,which uses CNN to extract spatial features in energy consumption data,LSTM to process time series data,and attention mechanism to determine feature weights,improving the prediction accuracy of the model.

building energy consumptionpredictiondeep learningconvolutional neural networklong short-term memory networkattention mechanism

高致源、邢建春、张学伟、邓忠凯

展开 >

中国人民解放军陆军工程大学,南京

建筑能耗 预测 深度学习 卷积神经网络 长短时记忆网络 注意力机制

国家重点研发计划项目陆军工程大学基础前沿项目

2023YFC3107100KYFYJKQTZQ23003

2024

暖通空调
亚太建设科技信息研究院 中国建筑设计研究院 中国建筑学会暖通空调分会

暖通空调

CSTPCD
影响因子:0.711
ISSN:1002-8501
年,卷(期):2024.54(8)
  • 11