首页|基于机器学习的液态粪污农田施用氨排放系数研究

基于机器学习的液态粪污农田施用氨排放系数研究

扫码查看
为量化环境因子、施肥技术、粪污理化特性等因素对液态粪污还田利用后氨排放系数的影响,本研究采用Meta分析的方法,通过对52篇文献、总计454组数据的分析,探究了土壤性质、液态粪污性质、农田管理措施等16个因素对土壤氨排放系数的影响,并利用MatLab机器学习器训练和构建氨排放系数模型,对农田氨排放系数进行预测。结果表明:通过Meta分析发现粪污类型、粪污干物质含量、液态粪污施用方式、土壤pH是影响氨排放系数最重要的因素。在26个训练模型中,高斯过程模型(指数GPR)的决定系数(0。64)和均方根误差(0。067)均在所有模型中最优,且氨排放系数预测值和真实值相关系数达到0。91,该模型不仅成功预测了粪污施用技术对氨排放系数的影响,同时还可系统对比液态粪污的前期处理方式及其干物质含量、pH等理化特性对还田后氨排放系数的影响,但对不同质地土壤的氨排放系数识别度较低。本研究构建的液态粪污氨排放系数预测模型,不仅可较好地反映施肥技术、环境因子等因素对氨排放的影响,同时系统揭示了养殖场液态粪污理化特性和管理方式对还田土壤的氨排放系数的影响。
Examination of the ammonia emission coefficient of liquid manure associated with its field application based on machine learning
To quantify the effects of environmental factors,fertilization techniques,physical and chemical characteristics of manure on ammonia(NH3)emission coefficient after liquid manure return to field.This study used the method of meta-analysis to explore the effects of 16 factors,including soil properties,liquid manure properties,and farmland management measures,on soil NH3 emission coefficient.We analyzed 52 publications and a total of 454 observation studies.The machine learning toolbox in the MatLab package was used to train and construct a prediction model for the NH3 emission coefficient.According to the meta-analysis,the type,dry matter content,pH of liquid manure,and application method were the most important factors affecting the NH3 emission coefficient.Among 26 trained models,the most effective model was the Gaussian process model(exponential GPR)with a determination coefficient(R2)of 0.64 and root-mean-square error(RSME)of 0.067.The correlation coefficient between the predicted and actual NH3 emission coefficients reached 0.91.This model could not only predict the impact of manure application technology on the NH3 emission coefficient successfully but also systematically compared the pre-treatment methods of liquid manure and the effects of its dry matter content,pH,and other physicochemical properties on the NH3 emission coefficient after field application.However,the variation in the NH3emission coefficient for different soil textures was relatively low.In conclusion,the prediction model for the NH3 emission coefficient can not only indicate the effects of fertilization technology,environmental factors,and other factors on NH3 emissions,but also systematically elucidate the physicochemical characteristics and management methods for liquid manure with respect to the NH3 emission coefficient after field application.

liquid manurefarmland soilammonia emission coefficientmeta-analysismachine learning

韩宇萱、苏晓红、韩琳、魏梦泽、侯增慧、廖文华、高志岭

展开 >

河北农业大学资源与环境科学学院,河北 保定 071000

中国冶金地质总局地球物理勘查院测试中心,河北 保定 071000

河北省农田生态环境重点实验室,河北 保定 071000

液态粪污 农田土壤 氨排放系数 Meta分析 机器学习

2024

农业环境科学学报
农业部环境保护科研监测所 中国农业生态环境保护协会

农业环境科学学报

CSTPCD北大核心
影响因子:1.52
ISSN:1672-2043
年,卷(期):2024.43(9)