首页|省域科技金融效率时空分异及影响因素研究——以山东为例

省域科技金融效率时空分异及影响因素研究——以山东为例

扫码查看
[目的/意义]探讨科技金融效率的评价机制.[方法/过程]通过构建超效率SBM模型和全局Malmquist指数,以山东为例测度了山东省各地市科技金融效率及其年际变化和地域差异,并进一步剖析了影响科技金融效率的相关因素.[局限]未细分到具体的科技金融工具和手段,下一步将继续深入研究.[结果/结论]山东省科技金融效率整体上升,但地域差异显著,而技术进步有助于缩小地区差异.时间维度上,2014―2017 年间,多数地区效率稳步上升,而2018―2022 年间,三大经济圈一体化联动使得效率均呈现波动上升趋势.金融市场发展和数字化发展有助于山东省科技金融效率的提高,政府和企业科研投入与科技金融效率呈负相关,科技金融资源的多元化、科学化配置是各级政府和市场需重点考虑的问题.
Research on the Spatiotemporal Differentiation and Influencing Factors of Science and Technology Financial Efficiency in Provincial-level:Evidence from Shandong
[Objective/Significance]This paper aims to explore the evaluation mechanism of STF efficiency.[Methods/Processes]By constructing a super-efficiency SBM model and a global Malmquist model,the study measured the efficiency of STF and its inter-annual changes and regional differences in various cities in Shandong Province.At the same time,the Tobit model was used to further analyze the factors that influence the efficiency of STF.[Limitations]This study has not been subdivided into specific technology financial instruments and means,and further in-depth research will be conducted in the next step.[Results/Conclusions]The results indicate that the efficiency of STF in Shandong Province has increased overall,but there are significant regional differences.Technological progress helps to narrow regional disparities.In terms of time dimension,from 2014 to 2017,the efficiency of most regions steadily increased,while from 2018 to 2022,the integration and linkage of the three major economic circles led to a fluctuating upward trend in efficiency.The degree of financial market development and digitization contributes to the improvement of STF efficiency in Shandong Province,while government and enterprise research investment is negatively correlated with STF efficiency.The diversified and scientific allocation of STF resources is a key issue that governments at all levels and the market must take into serious consideration.

Science and Technology FinanceAnalysis of Influencing FactorsSuper SBM ModelTobit Model

姜宁朋、王福康、姜媛、曲妍妍、周立波、张路

展开 >

山东省科技服务发展推进中心 济南 250101

齐鲁工业大学(山东省科学院)经管学部 济南 250353

山东省创新发展研究院 济南 250101

山东产权交易中心有限公司 济南 250101

展开 >

科技金融效率 影响因素分析 超效率SBM模型 Tobit模型

山东省重点研发计划(软科学)项目山东省重点研发计划(软科学)项目

2024RZB03052022RZA03016

2024

情报工程

情报工程

CSTPCDCHSSCD
ISSN:
年,卷(期):2024.10(4)