首页|融合BERT和主题模型的谣言检测方法

融合BERT和主题模型的谣言检测方法

扫码查看
[目的/意义]在谣言检测过程中,针对文本的上下文语义特征和主题语义特征没有得到充分挖掘的问题,提出了一种融合BERT和主题模型的谣言检测方法,提升谣言检测效果。[方法/过程]利用BERT模型挖掘文本动态上下文语义特征,利用主题模型挖掘文本主题语义特征;同时结合了微博影响力和用户可信度特征,并在微博影响力特征设计阶段考虑了时效性因素;将以上特征进行充分融合,构建谣言检测模型。[结果/结论]以微博真实数据进行实证分析,实验结果表明,该方法在进行谣言检测任务时效果较好,准确率最高达到了 93。68%,相较于表现性能最好的传统机器学习方法、深度学习方法、融合特征方法分别提升了约9。92%、3。29%、7。75%,能够实现对谣言的有效检测。此外,在微博影响力特征设计阶段考虑时效性因素更有助于提升谣言检测效果。[创新/局限]谣言检测效果仍有一定提升空间,未来可尝试结合用户评论内容特征进一步提升谣言检测效果。
A Rumor Detection Method Integrating BERT and Topic Model
[Purpose/significance]In the process of rumor detection,the contextual semantic features and topic semantic features of the text have not been sufficiently addressed.This study proposes a rumor detection method that combines BERT and topic models to en-hance the effectiveness of rumor detection.[Method/process]Utilizing the BERT model to extract dynamic contextual semantic fea-tures from text,and employing topic modeling techniques to mine topic-based semantic features,this paper also integrates both Weibo influence and user credibility features.In the design phase of the Weibo influence feature,time-sensitive factors are taken into consid-eration.The aforementioned features are fully integrated to build a rumor detection model.[Result/conclusion]An empirical analysis was conducted using real-world data from Weibo,and the experimental results demonstrate that the proposed method exhibits superior performance in rumor detection tasks,achieving a peak accuracy of 93.68%.This represents improvements of approximately 9.92%,3.29%,and 7.75%compared to the best-performing traditional machine learning methods,deep learning methods,and feature fusion methods,respectively,enabling effective rumor detection.Furthermore,considering the timeliness factor during the design phase of Weibo influence features contributes to enhancing the efficacy of rumor detection.[innovation/limitation]There is still room for im-provement in rumor detection performance.In the future,it may be worthwhile to explore incorporating user comment content features to further enhance the effectiveness of rumor detection.

rumor detectionBERTtopic modelsocial networksWeibosemantic fusion

曾江峰、程征、黄泳潼、高鹏钰

展开 >

华中师范大学信息管理学院,湖北武汉 430079

谣言检测 BERT 主题模型 社交网络 微博 语义融合

国家自然科学基金青年基金教育部人文社会科学研究青年基金中央高校基本科研业务费资助项目武汉市知识创新专项曙光计划湖北省自然科学基金一般面上项目

6210215921YJC870002CCNU22QN01720220108010202872023AFB1018

2024

情报科学
中国科学技术情报学会 吉林大学

情报科学

CSTPCDCSSCICHSSCD北大核心
影响因子:2.275
ISSN:1007-7634
年,卷(期):2024.42(2)