首页|基于信息画像的突发事故灾难舆情传播效果的预测模型研究

基于信息画像的突发事故灾难舆情传播效果的预测模型研究

扫码查看
[目的/意义]对突发事故灾难舆情信息进行精准画像,实现高传播信息的早期分类与识别,并实施精准化的引导对策。[方法/过程]以长沙自建房倒塌事件的微博数据为例,首先使用熵权法对信息传播效果进行评价,其次采用K-Modes聚类对高传播信息构建信息画像,最后基于XGBoost算法构建分类预测模型,并比较不同模型的预测效果。[结果/结论]根据信息画像可将突发事故灾难舆情信息划分为"高传播-官方救援报道类信息""高传播-官方事故处置类信息""高传播-大V情感表达类信息""高传播-官方事故损失类信息"和"低传播信息"五类。同时,XGBoost算法相比其他机器学习分类算法预测性能最好,准确率可达93。94%。[创新/局限]提出一种基于画像的网络舆情信息传播效果的预测方法,以实现对突发事故灾难舆情信息的精准预测;未来会增加多个舆情事件作为数据集并结合深度学习算法,进一步提升模型预测效果。
A Prediction Model for the Effectiveness of Public Opinion Dissemination about Accident Di-sasters Based on Information Portrait
[Purpose/significance]To accurately portray public opinion information on accident disasters,to realize the early classifica-tion and identification of highly disseminated information,and to make precise guidance measures.[Method/process]Taking the micro-blogging data of the self-built house collapse in Changsha as an example,we firstly use the entropy weight method to evaluate the in-formation dissemination effect,secondly,use K-Modes clustering to construct an information portrait of the highly disseminated infor-mation and finally build a classification prediction model based on the XGBoost algorithm and compare the prediction effect of differ-ent models.[Result/conclusion]Based on the information portrait,we can classify public opinion information on accident disasters into five categories:"highly disseminated-official accident rescue information","highly disseminated-official accident penalty informa-tion","highly disseminated-self-media emotional information","highly disseminated-official accident loss information"and"lowly disseminated information."Meanwhile,the XGBoost algorithm has the best prediction performance compared with other algorithms,with an accuracy rate of 93.94%.[Innovation/limitation]We propose a method for predicting the effect of online public opinion infor-mation dissemination based on portraits to realize the problem of accurate prediction of public opinion information on accident disas-ters;we will add multiple public opinion events as datasets and combine them with deep learning algorithms to further improve the model effect.

accident disastersinformation dissemination effectinformation portraitprediction modelonline public opinion

杨永清、孙凯、张媛媛、樊治平

展开 >

山东工商学院管理科学与工程学院,山东烟台 264005

东北大学工商管理学院,辽宁沈阳 110169

突发事故灾难 信息传播效果 信息画像 预测模型 网络舆情

国家社会科学基金

20BSH151

2024

情报科学
中国科学技术情报学会 吉林大学

情报科学

CSTPCDCSSCICHSSCD北大核心
影响因子:2.275
ISSN:1007-7634
年,卷(期):2024.42(4)