首页|跨平台社交媒体用户生成内容差异研究

跨平台社交媒体用户生成内容差异研究

扫码查看
[目的/意义]了解不同类型社交媒体平台中用户生成内容的文本特征,探究其话题转移与内容外延的差异性,对更好地引导用户生成内容具有重要的理论价值和实践意义。[方法/过程]研究根据平台发布的主要内容形式进行分类,选取四大社交媒体平台,利用关键词挖掘、词共现和情感分析技术,对比分析用户生成内容差异化的语言风格、情感倾向、话题转移和内容外延。[结果/结论]结果表明:文本特征方面,不同类型平台具有其独特的语言内容特征和语言风格。主题和内容方面,不同平台的主题转移与内容外延现象存在转移程度与内容上的差异。[创新/局限]研究基于通用的社交媒体内容呈现形式,创新性地从跨平台视角分析了不同类型的社交媒体平台用户生成内容中相异的文本特征、主题转移与内容外延现象。未来可结合多种主题事件的用户生成内容,进一步丰富研究方法并深入探究差异背后的原因。
Cross-Platform Social Media User-Generated Content Differences
[Purpose/significance]Understanding the textual characteristics of user-generated content in different types of social me-dia platforms,exploring the difference of topic shift and content extension,has important theoretical value and practical significance to better guide user-generated content.[Method/process]The research classifies the main content forms released by the platform,selects four social media platforms,and uses keyword mining,word co-occurrence,and sentiment analysis techniques to compare and analyze the different language style,emotional tendency,topic shift,and content extension of user-generated content.[Result/conclusion]The results show that in terms of textual features,different platforms have their own unique language content features and language styles.In terms of theme and content,there are differences in the degree of shift and content of topic shift and content extension phenomenon on different platforms.[Innovation/limitation]Based on the common types of social media content presentation,this study innovatively explores the different textual characteristics,topic shift,and content extension of user-generated content on different types of social media platforms from a cross-platform perspective.In the future,the user-generated content from multiple topic events can be com-bined to further enrich the research methods and explore the reasons behind the differences.

cross-platformsocial mediauser-generated contentlanguage styletopic shift

胡媛、蒋天森、古淋鑫、高薇

展开 >

南昌大学公共政策与管理学院,江西南昌 330031

南昌大学数字素养与技能提升研究中心,江西南昌 330031

跨平台 社交媒体 用户生成内容 语言风格 话题转移

国家社会科学基金青年项目

22CTQ022

2024

情报科学
中国科学技术情报学会 吉林大学

情报科学

CSTPCDCSSCICHSSCD北大核心
影响因子:2.275
ISSN:1007-7634
年,卷(期):2024.42(4)