首页|面向应急需求的科技文献推荐与知识抽取

面向应急需求的科技文献推荐与知识抽取

扫码查看
[目的/意义]为满足突发事件下的公众信息需求,提出一种面向应急需求的科技文献推荐与知识抽取模型,为公众推荐与其应急需求相关的高质量文献及科技知识。[方法/过程]首先,对微博平台中包含"阳康""后遗症"的新冠相关博文进行聚类,挖掘并归纳公众应急需求。其次,对文献进行主题建模,抽取文献的主题关键词并与需求进行相似度计算,取相似度大于阈值的文献形成候选推荐文献集;最后,综合考虑相似度、创新性、学术影响力、Altmetric四个指标对文献进行排序,并对推荐文献进行基于规则的知识抽取,获取文献中的科技知识。[结果/结论]将公众应急需求归纳为六类,分别为轻型症状、康后运动、防护措施、二次感染、心理健康、营养管理。[创新/局限]本研究根据公众需求向社交媒体用户推荐高质量文献及科技知识。未来将调查更多类型的突发事件,对不同事件下的公众应急需求进行挖掘与文献推荐。
Scientific Literature Recommendation and Knowledge Extraction for Emergency Needs
[Purpose/significance]To meet the public information needs during public emergencies,a model is proposed to recommend scientific and technical literature and extract knowledge from the literature.The model is able to recommend high quality literature and scientific and technical knowledge relevant to public emergency needs to the public.[Method/process]Firstly,the microblog posts related to"Yang Kang"(recovery from Covid-19)and"Sequelae"on the Sina Weibo platform are clustered to mine the public emergency needs of the Covid-19 outbreak.Secondly,we recommend high-quality literature.Topic keywords are extracted from the literature.The similarity between keywords and public emergency needs is computed,and the literatures with the similarity higher than the threshold are selected as candidate recommended literature collection.Indicators of similarity,innovation,academic influence and Altmetric are considered to rank the candidate literatures.The rule-based approach is used to extract the knowledge in the litera-tures.[Result/conclusion]The public emergency needs are summarized into six categories,which are mild symptoms,post-rehabilitation exercise,protective measures,secondary infection,mental health,and nutrition management.[Innovation/limitation]This study recommends high-quality literature and technical knowledge related to the public needs to social media users.In future,we will investigate more types of public emergencies,mine public emergency needs during different events and recommend related litera-tures.

emergency needsliterature recommendationscientific and technical knowledgeknowledge extractioninformation matching

安璐、魏辰瑜

展开 >

武汉大学信息资源研究中心,湖北武汉 430072

武汉大学信息管理学院,湖北武汉 430072

应急需求 文献推荐 科技知识 知识抽取 信息匹配

国家自然科学基金面上项目国家自然科学基金创新研究群体项目国家自然科学基金面上项目

721741537192100272374219

2024

情报科学
中国科学技术情报学会 吉林大学

情报科学

CSTPCDCSSCICHSSCD北大核心
影响因子:2.275
ISSN:1007-7634
年,卷(期):2024.42(5)