首页|基于BERT-BiLSTM混合模型的社交媒体虚假信息识别研究

基于BERT-BiLSTM混合模型的社交媒体虚假信息识别研究

扫码查看
[目的/意义]探索信息疫情背景下社交媒体中真伪信息的主题特征,研究社交媒体平台评论信息特征及真伪识别问题,为用户和社交媒体平台信息识别提供参考依据。[方法/过程]针对社交媒体平台上疫情相关的多主题数据,以Twitter平台推文为数据集。运用LDA模型,提取真实信息和虚假信息的主要表述和语义特征。引入BERT预处理方式,融合双向长短时记忆网络算法,构建BERT-BiLSTM混合模型,识别虚假疫情信息。[结果/结论]基于LDA主题模型的对比研究,发现真实和虚假信息在主题和表述特征上存在显著差异。通过与传统机器学习算法进行比较,BERT-BiLSTM模型对虚假疫情信息识别具有显著优势,准确率达到0。960,F1值为0。961。因此,本文构建的BERT-BiLSTM模型将为虚假信息识别提供更精准、高效的解决方案。[创新/局限]以社交媒体平台疫情信息为研究对象,综合运用LDA主题模型探究了疫情信息的特征,在小规模数据集上以较低成本实现了多主题数据的有效识别,为信息疫情治理提供了高效的解决方案。
A Study on Social Network Epidemic Misinformation Recognitional Mixture Model Based on BERT-BiLSTM
[Purpose/significance]This research aims to explore the thematic features of real and false information,research the issue of identifying the authenticity of comment information,and provide reference basis for information recognition on social media platform under the background of public health emergency.[Method/process]For epidemic related multi topic data on social media platforms,LDA models are used to extract thematic features of real and false information.By introducing a BERT preprocessing method,we con-struct a BERT-BiLSTM hybrid model to identify false epidemic information.[Result/conclusion]We found that there are significant differences between real and false information in thematic features and expression methods,providing opinions and references for iden-tifying false information.Besides,compared with traditional machine learning algorithms,BERT-BiLSTM model has significant advan-tages in identifying epidemic misinformation,with an accuracy rate of 0.960 and an Fl value of 0.961.The BERT-BiLSTM model will provide a more efficient and accurate solution for misinformation recognition.[Innovation/limitation]Taking epidemic information on social media platforms as the research object,the LDA model was comprehensively used to explore the main characteristics of real and false epidemic information.Effective identification of multi topic data was achieved at a lower cost on small-scale datasets,providing an efficient solution for infodemic containment.

social mediamulti topicLDA modelcomparison researchepidemic misinformation identificationBERT-BiLSTM

冯由玲、康鑫、周金娉、李军

展开 >

吉林财经大学管理科学与信息工程学院,吉林长春 130117

吉林省商务大数据研究中心,吉林长春 130117

社交媒体 多主题数据 LDA模型 对比研究 虚假信息识别 BERT-BiLSTM

2024

情报科学
中国科学技术情报学会 吉林大学

情报科学

CSTPCDCSSCICHSSCD北大核心
影响因子:2.275
ISSN:1007-7634
年,卷(期):2024.42(6)