首页|融合多模态数据的中文医学实体识别研究

融合多模态数据的中文医学实体识别研究

扫码查看
[目的/意义]医学实体识别是医疗健康知识挖掘和知识组织的关键环节.深入挖掘多模态数据间语义关联可以提升医学实体识别效果,进而为领域知识补全和知识推理提供支撑.[方法/过程]提出一种基于双线性注意力融合机制的多模态中文医学实体识别模型BAF-MNER.首先通过视觉和文本编码器进行多模态医学数据的语义特征学习;接着利用双线性注意力网络实现图像和文本跨模态语义交互,并引入门控机制过滤视觉噪声;然后融合基于注意力机制的视觉特征和文本特征进而构建多模态特征表示,同时增加批量归一化层优化深度神经网络;最后将多模态特征向量输入CRF层解码获取预测标签.[结果/结论]本模型能够有效提升中文医学实体识别效果,在多模态医学数据集上的F1值较单模态基线模型提升4.07%,较多模态基线模型提升1.65%;在多模态公开数据集上的实验表明模型具有良好的泛化能力.
Research on Chinese Medical Named Entity Recognition with Fusion of Multimodal Data
[Purpose/significance]Medical named entity recognition is a critical step for medical and healthcare knowledge mining and knowledge organization.The semantic associations between multimodal data are mined to improve the medical entity rec-ognition effect,which provides support for domain knowledge complementation and knowledge reasoning.[Method/process]In this paper,we propose a multimodal Chinese medical named entity recognition model BAF-MNER(Bilinear Attention Fusion-Multi-modal Named Entity Recognition)based on bilinear attention fusion mechanism.The model first learns semantic features from multi-modal medical data through visual and text encoders;next a bilinear attention network is utilized to achieve cross-modal semantic interaction between image and text,introducing a gating mechanism to filter the visual noise;then fusing the visual and text fea-tures based on the attention mechanism to construct the multimodal feature representations,and adding a batch normalization layer to optimize the deep neural network;finally,inputting the multimodal feature vector into a CRF layer to decode to obtain the pre-dicted labels.[Result/conclusion]The proposed model can effectively improve the Chinese medical named entity recognition,in-creasing the F1 value on multimodal medical dataset by 4.07%compared with the unimodal baseline model,and 1.65%compared with the multimodal baseline model;the experiments on multimodal public dataset indicate an excellent generalization of our model.

multimodal named entity recognitionmultimodal learningmultimodal fusionresidual networkbilinear atten-tion mechanism

韩普、陈文祺、顾亮、叶东宇、景慎旗

展开 >

南京邮电大学管理学院,江苏 南京 210003

江苏省数据工程与知识服务重点实验室,江苏南京 210023

江苏省人民医院数据应用管理中心,江苏 南京 210029

多模态实体识别 多模态学习 多模态融合 残差网络 双线性注意力机制

国家社会科学基金项目

22BTQ096

2024

情报理论与实践
中国国防科学技术信息学会 中国兵器工业第二一零研究所

情报理论与实践

CSTPCDCSSCICHSSCD北大核心
影响因子:1.302
ISSN:1000-7490
年,卷(期):2024.47(9)