首页|基于异构属性传播的网络用户画像方法

基于异构属性传播的网络用户画像方法

扫码查看
[目的/意义]为解决现有基于在线评论的用户画像维度单一问题,提出一种基于异构属性传播的网络用户画像方法.[方法/过程]基于用户、电影和标签构建图模型,从基本属性、电影偏好、情感偏好以及评分行为多个维度对用户属性初始化,作为用户节点属性,并通过迭代传播的方式不断更新用户属性.[结果/结论]实验结果表明,所提出的方法能够显著丰富用户画像维度,相比现有最优深度学习模型,均方误差由 0.113 减小到 0.083.通过属性扩增及传播,本方法能够提供丰富且准确的用户画像能力.[局限]实验数据来源于电影评论,用户画像对象为电影评分用户,场景较为单一,缺少在其他领域的验证.
Network User Profiling Based on Heterogeneous Attribute Propagation
[Purpose/significance]To address the issue of single-dimensional user profiling based on online reviews,a meth-od for network user profiling based on heterogeneous attribute propagation is proposed.[Method/process]A graph model is con-structed based on users,movies,and tags.User attributes are initialized from multiple dimensions,including basic attributes,movie preferences,emotional preferences,and rating behaviors,serving as user node attributes.These user attributes are then con-tinuously updated through iterative propagation.[Result/conclusion]Experimental results show that the proposed method can sig-nificantly enrich the dimensions of user profiling.Compared to the current best deep learning model,the mean squared error(MSE)is reduced from 0.113 to 0.083.Through attribute augmentation and propagation,this method can provide rich and accurate user profiling capabilities.[Limitations]The experimental data is sourced from movie reviews,and the user profiles are based on movie rating users.This scenario is relatively limited and lacks validation in other domains.

heterogeneous attribute propagationgraph modeluser profileuser attribute extraction

李勇男

展开 >

中国人民公安大学国家安全学院,北京 100038

四川警察学院智慧警务与国家安全风险治理重点实验室,四川 泸州 646000

异构属性传播 图模型 用户画像 用户属性提取

2025

情报理论与实践
中国国防科学技术信息学会 中国兵器工业第二一零研究所

情报理论与实践

北大核心
影响因子:1.302
ISSN:1000-7490
年,卷(期):2025.48(1)