首页|迭代学习控制器参数的数据驱动自适应整定方法

迭代学习控制器参数的数据驱动自适应整定方法

扫码查看
针对PID型迭代学习控制(iterative learning control,ILC)方法,提出了两种数据驱动自适应整定(data-driven adaptive tuning,DDAT)方法。首先采用紧格式迭代动态线性化(compact form iterative dynamic linearization,CFIDL)方法将原始的非线性系统转化为等价的线性数据模型,设计了一个目标函数来动态地调整 PID型 ILC 的学习增益。其次,通过对设计的目标函数进行优化,提出了一种基于 CFIDL 的 DDAT 方法。该方法只使用实际的 I/O 数据,而不需要任何机理模型信息。进一步,引入偏格式迭代动态线性化(partial form iter-ative dynamic linearization,PFIDL)方法对结果进行扩展,提出了一种基于PFIDL的DDAT方法。所提出的两种DDAT方法都可以提高 PID 型 ILC 对不确定性的鲁棒性。最后,通过仿真验证了两种方法的有效性。
Data-Driven Adaptive Tuning of Iterative Learning Control
In this paper,we propose two data-driven adaptive tuning(DDAT)approaches of PID-type ILC.First,we use a compact form iterative dynamic linearization(CFIDL)method to transfer the original nonlinear system into a equivalent linear data model,and we design an objective function to dynamically tune the learning gains of ILC law.Then,by optimizing the designed objective function,a CFIDL based DDAT method is proposed.This DDAT method only uses the real I/O data and doesn't need to know any mathematical model infor-mation.On this basis,we introduce a partial form iterative dynamic linearization(PFIDL)method to extend the research results,and propose a PFIDL based DDAT method.Both the proposed DDAT methods can help the PID-type ILC have a better robustness against to the uncertainties.Finally,the effectiveness of the two proposed DDAT-based ILC methods is verified by the simulations.

data-driven methodsadaptive tuning of learning gainsiterative learning con-troloptimizing

于瀛祯、林娜、池荣虎

展开 >

青岛科技大学 自动化与电子工程学院,山东 青岛 266061

数据驱动方法 参数的自适应整定 迭代学习控制 优化

国家自然科学基金项目国家自然科学基金项目

6183300161873139

2024

青岛科技大学学报(自然科学版)
青岛科技大学

青岛科技大学学报(自然科学版)

CSTPCD
影响因子:0.297
ISSN:1672-6987
年,卷(期):2024.45(1)
  • 2