首页|双分支协同策略的弱监督行为检测

双分支协同策略的弱监督行为检测

扫码查看
弱监督行为检测旨在使用视频级标签定位动作的起止边界及识别相应的行为类别。现有的模型依然存在行为定位不完整、背景干扰等问题。对此,提出了双分支协同策略,为背景帧引入辅助类,采用权重共享机制的非对称式训练,使得该模型能够抑制背景帧的激活以提高定位性能。在优化分支提出中心损失项来学习每个动作类的聚类中心,并惩罚特征与其中心之间的距离及最小类内变化,从而增强特征的可辩别性;基本分支丢弃其动作类的中心区域,同时学习背景特征,通过迭代训练挖掘与其行为相关的不明显区域,有助于更好的模拟背景,实现行为的完整性定位。该算法在THUMOS14和ActivityNet1。2数据集上进行实验验证并与其他相关文献进行比较,结果表明了所提出算法的可行性。
Two-Branch Collaborative Strategy for Weakly Supervised Behavior Detection
Weakly supervised behavior detection aims to locate start and end boundaries of ac-tion and identify corresponding behavior categories using video-level labels.Most existing models still have problems such as incomplete behavior localization and background infer-ence.In this regard,the paper proposes a two-branch collaborative strategy,which intro-duces auxiliary classes for background frames,and adopts asymmetric training with a weight sharing mechanism,so that the model can suppress the activation of background frames to improve localization performance.In the optimization,the center loss term is proposed,which aims to enhance their discriminability through action-specific clustering and minimi-zing the intra-class variations.The basic branch discards the central regions of the action classes and learns background features.Through iterative training,mining inconspicuous re-gions related to behaviors helps to better simulate the background and achieve complete posi-tioning of behavior.Extensive experiments are carried out on THUMOS14 and Activity-Net1.2 datasets and compared with other relevant literature,which proves the feasibility of the proposed algorithm.

temporal behavior localizationweakly supervised learningcenter loss termbackground classattention mechanism

王静、王传旭

展开 >

青岛科技大学 信息科学技术学院,山东 青岛 266061

时序行为检测 弱监督学习 中心损失项 背景类 注意力机制

国家自然科学基金

61672305

2024

青岛科技大学学报(自然科学版)
青岛科技大学

青岛科技大学学报(自然科学版)

CSTPCD
影响因子:0.297
ISSN:1672-6987
年,卷(期):2024.45(2)
  • 18