首页|基于多头自编码网络的单细胞多组学数据无监督降噪

基于多头自编码网络的单细胞多组学数据无监督降噪

扫码查看
单细胞多组学测序正在广泛应用于生物医学研究中,并产生大量的多样性组学数据。然而原始的单细胞多组学数据包含多种类型的测序噪声和冗余信息,对后续生物医疗层面的分析造成困难。现有的降噪方法主要依赖于单一的数据分布假设,并针对性的处理单个组学数据,这对模型联合处理不同组学数据造成极大地限制。本研究提出一种使用单细胞多组学数据降噪的分析方法,称为scMAED(single-cell multi-omics data via a multi-head autoen-coder network to denoising)。模型在多头自动编码器网络中添加了分类解码器,以无监督的方式来最大程度的去除数据噪声。首先,使用两个编码器独立学习多组学数据的内部特征,并联合输出的低维特征进行共同解码。其次,分类解码器不做任何数据分布假设,通过使用预测的细胞簇标签来反馈数据信息,以最大限度的去除复杂噪声。最后,使用主成分分析和 t-SNE进行可视化。本文基于模拟数据集和真实的小鼠数据集对模型进行性能评估,结果显示sc-MAED在降噪效果上优于实验中的对比方法,并能够极大的改善单细胞多组学数据的质量。
Unsupervised Denoising of Single-Cell Multi-Omics Data Based on Multi-Head Autoencoder Network
Single-cell multi-omics sequencing is being widely used in biomedical research and generates large amounts of diverse omics data.However,raw single-cell multi-omics data contains multiple types of sequencing noise and redundant information,which makes subse-quent biomedical analysis difficult.Existing denoising methods mainly rely on a single data distribution assumption and process a single omics data in a targeted manner,which greatly limits the joint processing of different omics data by the model.Therefore,we design and propose an analytical method for denoising using single-cell multi-omics data,called sc-MAED(single-cell multi-omics data via a multi-head autoencoder network to denoising).The model adds a classification decoder to the multi-head autoencoder network to remove the maximum noise from the data in an unsupervised manner.First,two encoders are used to independently learn the internal features of the multi-omics data,and jointly decode the out-put low-dimensional features.Second,the classification decoder does not make any data dis-tribution assumptions,and uses the predicted cell cluster labels to feed back data information to minimize complex noise.Finally,we use principal component analysis and t-SNE for visu-alization.In this paper,we evaluate the performance of the model based on simulated data-sets and real mouse datasets.The results show that scMAED is superior to the experimental comparison method in denoising effect,and can greatly improve the quality of single-cell multi-omics data.

single-cell multi-omics datadeep learningmulti-head autoencoder networknoise reduction

李双翼、刘发荣、任胜、于彬

展开 >

青岛科技大学 数理学院,山东 青岛 266061

青岛科技大学 数据科学学院,山东 青岛 266061

单细胞多组学数据 深度学习 多头自编码网络 降噪

国家自然科学基金项目山东省自然科学基金项目

62172248ZR2021MF098

2024

青岛科技大学学报(自然科学版)
青岛科技大学

青岛科技大学学报(自然科学版)

CSTPCD
影响因子:0.297
ISSN:1672-6987
年,卷(期):2024.45(4)