首页|基于ResNet-MLP模型的车辆目标检测算法

基于ResNet-MLP模型的车辆目标检测算法

扫码查看
为提高车辆目标检测精度,针对传统视觉传感器光照敏感性、空间感知性差等缺点,采用激光雷达传感器,提出一种基于ResNet-MLP二阶段模型的车辆目标检测算法.该算法对点云鸟瞰图的映射方式进行改进,使其保留点云高度特征,并通过改进后的ResNet进行点云特征的提取,最后使用并行多层感知机网络对车辆目标分类和位置回归.采用KITTI的 3D Object数据集进行验证,通过与PointNet++和VoxelNet方法进行对比实验,结果发现,交并比(IOU)较高时 3 种方法的检测精度均有所下降,但相对于其他 2 种算法,本算法检测精度更高,运行速度更快,可为未来自动驾驶车辆的实时感知方面提供技术支撑.
Vehicle target detection algorithm based on ResNet-MLP modeling
Aiming at the disadvantages of low sensitivity and poor spatial perception of tradi-tional visual sensors,a vehicle target detection algorithm based on ResNet-MLP two-stage model is proposed to enhance the accuracy of vehicle target detection by using LiDAR sen-sor.The algorithm improves the mapping of point cloud bird's-eye view so that it retains the point cloud height features,and the point cloud features are extracted by the improved Res-Net.Finally,a parallel multilayer perceptron network is used to classify vehicle targets and regress the position.KITTI's 3D Object dataset is used for validation,and through compar-ison experiments with PointNet++and VoxelNet methods,it is found that the detection accuracy of the three methods decreases when the IOU is higher,but compared to the other two algorithms,the proposed algorithm has better detection accuracy and higher running speed,which can provide technical support for the real-time perception of self-driving vehi-cles in the future.

vehicle target detectionLiDARpoint cloud imagesbird's-eye view mapping

王可栋、曲含章、马敏、杨子奕、康爱平

展开 >

青岛黄海学院 智能制造学院,青岛 266427

青岛理工大学机械与汽车工程学院,青岛 266525

长安大学 长安都柏林国际交通学院,西安 710064

青岛环球重工科技有限公司,青岛 266400

山东科技大学 能源与矿业工程学院,青岛 266590

青岛理工大学土木工程学院,青岛 266525

兰州现代职业学院 财经商贸学院 兰州 730300

展开 >

车辆目标检测 激光雷达 点云图像 鸟瞰图映射

2024

青岛理工大学学报
青岛理工大学

青岛理工大学学报

影响因子:0.514
ISSN:1673-4602
年,卷(期):2024.45(3)